Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Precision native polysaccharides from living polymerization of anhydrosugars

Abstract

The composition, sequence, length and type of glycosidic linkage of polysaccharides profoundly affect their biological and physical properties. However, investigation of the structure–function relationship of polysaccharides is hampered by difficulties in accessing well-defined polysaccharides in sufficient quantities. Here we report a chemical approach to precision polysaccharides with native glycosidic linkages via living cationic ring-opening polymerization of 1,6-anhydrosugars. We synthesized well-defined polysaccharides with tunable molecular weight, low dispersity and excellent regio- and stereo-selectivity using a boron trifluoride etherate catalyst and glycosyl fluoride initiators. Computational studies revealed that the reaction propagated through the monomer α-addition to the oxocarbenium and was controlled by the reversible deactivation of the propagating oxocarbenium to form the glycosyl fluoride dormant species. Our method afforded a facile and scalable pathway to multiple biologically relevant precision polysaccharides, including d-glucan, d-mannan and an unusual l-glucan. We demonstrated that catalytic depolymerization of precision polysaccharides efficiently regenerated monomers, suggesting their potential utility as a class of chemically recyclable materials with tailored thermal and mechanical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Living cationic ring-opening polymerization of 1,6-anhydrosugars.
Fig. 2: Preparation and characterization of precision polysaccharides.
Fig. 3: Monomer scope and computational studies.
Fig. 4: Synthesis of biologically relevant precision polysaccharides.
Fig. 5: Chemical recycling and material properties of precision polysaccharides.

Similar content being viewed by others

Data availability

All data are available in the manuscript or the Supplementary Information. Experimental data and characterization data for all new compounds prepared during these studies are provided in the Supplementary Information of this paper. Source data are provided with this paper.

References

  1. Varki, A. et al. Essentials of Glycobiology 2nd edn (Cold Spring Harbor Laboratory Press, 2009).

  2. Ragauskas, A. J. et al. The path forward for biofuels and biomaterials. Science 311, 484–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Zhu, Y., Romain, C. & Williams, C. K. Sustainable polymers from renewable resources. Nature 540, 354–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Dumitriu, S. Polysaccharides: Structural Diversity and Functional Versatility 2nd edn (Marcel Dekker, 2005).

  5. Fittolani, G., Tyrikos-Ergas, T., Vargová, D., Chaube, M. A. & Delbianco, M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J. Org. Chem. 17, 1981–2025 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kadokawa, J. Precision polysaccharide synthesis catalyzed by enzymes. Chem. Rev. 111, 4308–4345 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Zhu, Q. et al. Chemical synthesis of glycans up to a 128-mer relevant to the O-antigen of Bacteroides vulgatus. Nat. Commun. 11, 4142–4148 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guberman, M. & Seeberger, P. H. Automated glycan assembly: a perspective. J. Am. Chem. Soc. 141, 5581–5592 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Panza, M., Pistorio, S. G., Stine, K. J. & Demchenko, A. V. Automated chemical oligosaccharide synthesis: novel approach to traditional challenges. Chem. Rev. 118, 8105–8150 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xiao, R. X. & Grinstaff, M. W. Chemical synthesis of polysaccharides and polysaccharide mimetics. Prog. Polym. Sci. 74, 78–116 (2017).

    Article  CAS  Google Scholar 

  11. Saxon, D. J. et al. Architectural control of isosorbide-based polyethers via ring-opening polymerization. J. Am. Chem. Soc. 141, 5107–5111 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. McGuire, T. M. et al. Control of crystallinity and stereocomplexation of synthetic carbohydrate polymers from d- and l-xylose. Angew. Chem. Int. Ed. 60, 4524–4528 (2021).

    Article  CAS  Google Scholar 

  13. Stubbs, C. J. et al. Sugar-based polymers with stereochemistry-dependent degradability and mechanical properties. J. Am. Chem. Soc. 144, 1243–1250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Debsharma, T., Yagci, Y. & Schlaad, H. Cellulose-derived functional polyacetal by cationic ring-opening polymerization of levoglucosenyl methyl ether. Angew. Chem. Int. Ed. 58, 18492–18495 (2019).

    Article  CAS  Google Scholar 

  15. Mikami, K. et al. Polycarbonates derived from glucose via an organocatalytic approach. J. Am. Chem. Soc. 135, 6826–6829 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Dane, E. L. & Grinstaff, M. W. Poly-amido-saccharides: synthesis via anionic polymerization of a β-lactam sugar monomer. J. Am. Chem. Soc. 134, 16255–16264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ruckel, E. R. & Schuerch, C. Preparation of high polymers from 1,6-anhydro-2,3,4-tri-O-substituted β-d-glucopyranose. J. Org. Chem. 31, 2233–2239 (1966).

    Article  CAS  Google Scholar 

  18. Aoshima, S. & Kanaoka, S. A renaissance in living cationic polymerization. Chem. Rev. 109, 5245–5287 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Porwal, M. K. et al. Stereoregular functionalized polysaccharides via cationic ring-opening polymerization of biomass derived levoglucosan. Chem. Sci. 13, 4512–4522 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abel, B. A., Snyder, R. L. & Coates, G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 373, 783–789 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Uchiyama, M., Satoh, K. & Kamigaito, M. Cationic RAFT polymerization using ppm concentrations of organic acid. Angew. Chem. Int. Ed. 54, 1924–1928 (2015).

    Article  CAS  Google Scholar 

  22. Kottisch, V., Michaudel, Q. & Fors, B. P. Cationic polymerization of vinyl ethers controlled by visible light. J. Am. Chem. Soc. 138, 15535–15538 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Nielsen, M. M. & Pedersen, C. M. Catalytic glycosylations in oligosaccharide synthesis. Chem. Rev. 118, 8285–8358 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Yoshida, D. & Yoshida, T. Elucidation of high ring-opening polymerizability of methylated 1,6-anhydro glucose. J. Polym. Sci. A. Polym. Chem 47, 1013–1022 (2009).

    Article  CAS  Google Scholar 

  25. Zhu, Q. Q. et al. Structural identification of (1→6)-α-d-glucan, a key responsible for the health benefits of longan, and evaluation of anticancer activity. Biomacromolecules 14, 1999–2003 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Williams, S. J. & Withers, S. G. Glycosyl fluorides in enzymatic reactions. Carbohydr. Res. 327, 27–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Stone, B. A., Svensson, B., Collins, M. E. & Rastall, R. A. in Glycoscience 2nd edn (eds Fraser-Reid, B. O., Tatsuta, K. & Thiem, J.) 2325–2375 (Springer, 2008).

  28. Apostolou, I. et al. Murine natural killer cells contribute to the granulomatous reaction caused by mycobacterial cell walls. Proc. Natl. Acad. Sci. USA. 96, 5141–5146 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Calin, O., Eller, S. & Seeberger, P. H. Automated polysaccharide synthesis: assembly of a 30mer mannoside. Angew. Chem. Int. Ed. 52, 5862–5865 (2013).

    Article  CAS  Google Scholar 

  30. Getzler, Y. D. Y. L. & Coates, G. W. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    Article  Google Scholar 

  31. Shi, C. et al. Design principles for intrinsically circular polymers with tunable properties. Chem 7, 2896–2912 (2021).

    Article  CAS  Google Scholar 

  32. Mohadjer Beromi, M. et al. Iron-catalysed synthesis and chemical recycling of telechelic 1,3-enchained oligocyclobutanes. Nat. Chem. 13, 156–162 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Sathe, D. et al. Olefin metathesis-based chemically recyclable polymers enabled by fused-ring monomers. Nat. Chem. 13, 743–750 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Hong, M. & Chen, E. Y.-X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat. Chem. 8, 42–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Zhu, J. B., Watson, E. M., Tang, J. & Chen, E. Y.-X. A synthetic polymer system with repeatable chemical recyclability. Science 360, 398–403 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Häußler, M., Eck, M., Rothauer, D. & Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 590, 423–427 (2021).

    Article  PubMed  Google Scholar 

  37. Yuan, J. S. et al. 4-Hydroxyproline-derived sustainable polythioesters: controlled ring-opening polymerization, complete recyclability, and facile functionalization. J. Am. Chem. Soc. 141, 4928–4935 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Christensen, P. R., Scheuermann, A. M., Loeffler, K. E. & Helms, B. A. Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nat. Chem. 11, 442–448 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Song, Y. et al. Advancing the development of highly-functionalizable glucose-based polycarbonates by tuning of the glass transition temperature. J. Am. Chem. Soc. 140, 16053–16057 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Sangroniz, A. et al. Packaging materials with desired mechanical and barrier properties and full chemical recyclability. Nat. Commun. 10, 3559–3565 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Arnold and Mabel Beckman Foundation through a Beckman Young Investigator Award to J.N. NMR characterizations were supported by the National Science Foundation Major Research Instrumentation (NSF-MRI) Program, under award number CHE-2117246. We thank W. Z. Fan for assistance with the computational studies and J. B. Matson, S. Blosch, M. J. Zhong, M. X. Cao, C. F. Ke, Q. M. Lin, T. S. Emerick, T. Goodwin, M. W. Grinstaff, S. EI-Arid, M. Zhou, C. J. Yang, C. Liu, T. Jayasundera, M. Domin, S.-Y. Liu, J. A. Byers and J. Morken for characterization assistance and helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

L.W. and J.N. conceived and designed the project. J.N. oversaw the project. L.W., S.D. and Z. Zhao performed the experiments. Z. Zhou performed the computational studies. D.S., J.Z. and J.W. performed tensile testing. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jia Niu.

Ethics declarations

Competing interests

A PCT patent application (PCT/US2022/078036) based on this work has been filed by Boston College. J.N. and L.W. are listed as inventors in this application. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Brooks Abel, Cassandra Callmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–150, Tables 1–9 and synthetic Procedures.

Supplementary Data 1

The XYZ coordinates for the DFT calculations.

Source data

Source Data Fig. 2

MALDI-MS, SEC and kinetic data.

Source Data Fig. 4

SEC data for enzymatic degradation.

Source Data Fig. 5

SEC, TGA, DSC, PXRD and tensile test data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Zhou, Z., Sathe, D. et al. Precision native polysaccharides from living polymerization of anhydrosugars. Nat. Chem. 15, 1276–1284 (2023). https://doi.org/10.1038/s41557-023-01193-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01193-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing