Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stereocontrolled acyclic diene metathesis polymerization

Abstract

The cis/trans geometry of olefins is known to dramatically influence the thermal and mechanical properties of polyalkenamers. Yet, polymerization methods that efficiently control this parameter are scarce. Here we report the development of a stereoretentive acyclic diene metathesis polymerization that uses the reactivity of dithiolate Ru carbenes combined with cis monomers. These Ru catalysts exhibit exquisite retention of the cis geometry and tolerate many polar functional groups, enabling the synthesis of all-cis polyesters, polycarbonates, polyethers and polysulfites. The stereoretentive acyclic diene metathesis polymerization is also characterized by low catalyst loadings and tolerance towards trans impurities in the monomer batch, which should facilitate large-scale implementation. Modulation of the reaction temperature and time leads to an erosion of stereoretention, permitting a stereocontrolled synthesis of polyalkenamers with predictable cis:trans ratios. The impact of the stereochemistry of the repeating alkenes on the thermal properties is clearly demonstrated through differential scanning calorimetry and thermogravimetric analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of stereocontrolled ADMET.
Fig. 2: Monomers and Ru catalysts.
Fig. 3: Polymer scope of stereocontrolled ADMET.
Fig. 4: Selectivity in stereocontrolled ADMET.
Fig. 5: Relationship between polymer stereochemistry and thermal properties.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Information.

References

  1. Roman, D., Sauer, M. & Beemelmanns, C. Applications of the Horner–Wadsworth–Emmons olefination in modern natural product synthesis. Synthesis 53, 2713–2739 (2021).

    Article  CAS  Google Scholar 

  2. Worch, J. C. et al. Stereochemical enhancement of polymer properties. Nat. Rev. Chem. 3, 514–535 (2019).

    Article  CAS  Google Scholar 

  3. Bell, C. A. et al. Independent control of elastomer properties through stereocontrolled synthesis. Angew. Chem. Int. Ed. 55, 13076–13080 (2016).

    Article  CAS  Google Scholar 

  4. Ricci, G., Pampaloni, G., Sommazzi, A. & Masi, F. Dienes polymerization: where we are and what lies ahead. Macromolecules 54, 5879–5914 (2021).

    Article  CAS  Google Scholar 

  5. Yang, X., Gitter, S. R., Roessler, A. G., Zimmerman, P. M. & Boydston, A. J. An ion-pairing approach to stereoselective metal-free ring-opening metathesis polymerization. Angew. Chem. Int. Ed. 60, 13952–13958 (2021).

  6. Liu, J. et al. Thiol–yne click polymerization: regio- and stereoselective synthesis of sulfur-rich acetylenic polymers with controllable chain conformations and tunable optical properties. Macromolecules 44, 68–79 (2011).

    Article  CAS  Google Scholar 

  7. Kent, E. G. & Swinney, F. B. Properties and applications of trans-1,4-polyisoprene. Ind. Eng. Chem. Prod. Res. Dev. 5, 134–138 (1966).

    CAS  Google Scholar 

  8. Bhowmick, A. K., Kuo, C. C., Manzur, A., Arthur, A. M. & Intyre, D. M. Properties of cis-and trans-polyisoprene blends. J. Macromol. Sci. Phys. 25, 283–306 (1986).

    Article  Google Scholar 

  9. Baboo, M., Dixit, M., Sharma, K. & Saxena, N. S. Mechanical and thermal characterization of cis-polyisoprene and trans-polyisoprene blends. Polym. Bull. 66, 661–672 (2011).

    Article  CAS  Google Scholar 

  10. Montgomery, T. P., Ahmed, T. S. & Grubbs, R. H. Stereoretentive olefin metathesis: an avenue to kinetic selectivity. Angew. Chem. Int. Ed. 56, 11024–11036 (2017).

    Article  CAS  Google Scholar 

  11. Keitz, B. K., Fedorov, A. & Grubbs, R. H. Cis-selective ring-opening metathesis polymerization with ruthenium catalysts. J. Am. Chem. Soc. 134, 2040–2043 (2012).

    Article  CAS  Google Scholar 

  12. Khan, R. K. M., Torker, S. & Hoveyda, A. H. Readily accessible and easily modifiable Ru-based catalysts for efficient and Z-selective ring-opening metathesis polymerization and ring-opening/cross-metathesis. J. Am. Chem. Soc. 135, 10258–10261 (2013).

    Article  CAS  Google Scholar 

  13. Schrock, R. R. Synthesis of stereoregular polymers through ring-opening metathesis polymerization. Acc. Chem. Res. 47, 2457–2466 (2014).

    Article  CAS  Google Scholar 

  14. Koh, M. J. et al. High-value alcohols and higher-oxidation-state compounds by catalytic Z-selective cross-metathesis. Nature 517, 181–186 (2015).

    Article  CAS  Google Scholar 

  15. Montgomery, T. P., Johns, A. M. & Grubbs, R. H. Recent advancements in stereoselective olefin metathesis using ruthenium catalysts. Catalysts 7, 87 (2017).

    Article  Google Scholar 

  16. Song, J.-A. et al. Ru-catalyzed, cis-selective living ring-opening metathesis polymerization of various monomers, including a dendronized macromonomer, and implications to enhanced shear stability. J. Am. Chem. Soc. 142, 10438–10445 (2020).

    Article  CAS  Google Scholar 

  17. Benedikter, M. J. et al. Group 6 metal alkylidene and alkylidyne N-heterocyclic carbene complexes for olefin and alkyne metathesis. Coord. Chem. Rev. 415, 213315 (2020).

    Article  CAS  Google Scholar 

  18. Dawood, K. M. & Nomura, K. Recent developments in Z-selective olefin metathesis reactions by molybdenum, tungsten, ruthenium, and vanadium catalysts. Adv. Synth. Catal. 363, 1970–1997 (2021).

    Article  CAS  Google Scholar 

  19. Michaudel, Q., Kempel, S. J., Hsu, T.-W. & deGruyter, J. N. in Comprehensive Organometallic Chemistry, 4th edn, Vol. 13 (eds Parkin, G. et al.) 265–338. (Elsevier, 2022); https://doi.org/10.1016/B978-0-12-820206-7.00114-1

  20. Müller, D. S., Baslé, O. & Mauduit, M. A tutorial review of stereoretentive olefin metathesis based on ruthenium dithiolate catalysts. Beilstein J. Org. Chem. 14, 2999–3010 (2018).

    Article  Google Scholar 

  21. Grandner, J. M., Shao, H., Grubbs, R. H., Liu, P. & Houk, K. N. Origins of the stereoretentive mechanism of olefin metathesis with Ru-dithiolate catalysts. J. Org. Chem. 82, 10595–10600 (2017).

    Article  CAS  Google Scholar 

  22. Johns, A. M., Ahmed, T. S., Jackson, B. W., Grubbs, R. H. & Pederson, R. L. High trans kinetic selectivity in ruthenium-based olefin cross-metathesis through stereoretention. Org. Lett. 18, 772–775 (2016).

    Article  CAS  Google Scholar 

  23. Hsu, T.-W., Kim, C. & Michaudel, Q. Stereoretentive ring-opening metathesis polymerization to access all-cis poly(p-phenylenevinylene)s with living characteristics. J. Am. Chem. Soc. 142, 11983–11987 (2020).

    Article  CAS  Google Scholar 

  24. Hsu, T.-W., Kempel, S. J. & Michaudel, Q. All-cis poly(p-phenylene vinylene)s with high molar masses and fast photoisomerization rates obtained through stereoretentive ring-opening metathesis polymerization of [2,2]paracyclophane dienes with various aryl substituents. J. Polym. Sci. 60, 569–578 (2022).

    Article  CAS  Google Scholar 

  25. Caire da Silva, L., Rojas, G., Schulz, M. D. & Wagener, K. B. Acyclic diene metathesis polymerization: History, methods and applications. Prog. Polym. Sci. 69, 79–107 (2017).

    Article  CAS  Google Scholar 

  26. Pribyl, J., Wagener, K. B. & Rojas, G. ADMET polymers: synthesis, structure elucidation, and function. Mater. Chem. Front. 5, 14–43 (2021).

    Article  CAS  Google Scholar 

  27. Wagener, K. B., Boncella, J. M. & Nel, J. G. Acyclic diene metathesis (ADMET) polymerization. Macromolecules 24, 2649–2657 (1991).

    Article  CAS  Google Scholar 

  28. Rojas, G., Inci, B., Wei, Y. & Wagener, K. B. Precision polyethylene: changes in morphology as a function of alkyl branch size. J. Am. Chem. Soc. 131, 17376–17386 (2009).

    Article  CAS  Google Scholar 

  29. Aitken, B. S., Lee, M., Hunley, M. T., Gibson, H. W. & Wagener, K. B. Synthesis of precision ionic polyolefins derived from ionic liquids. Macromolecules 43, 1699–1701 (2010).

    Article  CAS  Google Scholar 

  30. Weychardt, H. & Plenio, H. Acyclic diene metathesis polymerization of divinylarenes and divinylferrocenes with Grubbs-type olefin metathesis catalysts. Organometallics 27, 1479–1485 (2008).

    Article  CAS  Google Scholar 

  31. Xu, C., Shen, X. & Hoveyda, A. H. In situ methylene capping: a general strategy for efficient stereoretentive catalytic olefin metathesis. The concept, methodological implications, and applications to synthesis of biologically active compounds. J. Am. Chem. Soc. 139, 10919–10928 (2017).

    Article  CAS  Google Scholar 

  32. Guoshun, Y., Keda, H. & Yang, Q. Cis/cis-2,5-dipropenylthiophene monomers for high-molecular-weight poly(2,5-thienylene vinylene)s through acyclic diene metathesis polymerization. J. Polym. Sci. A Polym. Chem. 52, 591–595 (2014).

    Article  CAS  Google Scholar 

  33. Patton, J. T., Boncella, J. M. & Wagener, K. B. Acyclic diene metathesis (ADMET) polymerization: the synthesis of unsaturated polyesters. Macromolecules 25, 3862–3867 (1992).

    Article  CAS  Google Scholar 

  34. Wagener, K. B. & Patton, J. T. Acyclic diene metathesis (ADMET) polymerization. Synthesis of unsaturated polycarbonates. Macromolecules 26, 249–253 (1993).

    Article  CAS  Google Scholar 

  35. Wagener, K. B. & Brzezinska, K. Acyclic diene metathesis (ADMET) polymerization: synthesis of unsaturated polyethers. Macromolecules 24, 5273–5277 (1991).

    Article  CAS  Google Scholar 

  36. Gaines, T. W. et al. Precise sulfite functionalization of polyolefins via ADMET polymerization. ACS Macro Lett. 4, 624–627 (2015).

    Article  CAS  Google Scholar 

  37. Fokou, P. A. & Meier, M. A. R. Studying and suppressing olefin isomerization side reactions during ADMET polymerizations. Macromol. Rapid Commun. 31, 368–373 (2010).

    Article  CAS  Google Scholar 

  38. Engel, J. et al. Loss and reformation of ruthenium alkylidene: connecting olefin metathesis, catalyst deactivation, regeneration, and isomerization. J. Am. Chem. Soc. 139, 16609–16619 (2017).

    Article  CAS  Google Scholar 

  39. Courchay, F. C., Sworen, J. C., Ghiviriga, I., Abboud, K. A. & Wagener, K. B. Understanding structural isomerization during ruthenium-catalyzed olefin metathesis: a deuterium labeling study. Organometallics 25, 6074–6086 (2006).

    Article  CAS  Google Scholar 

  40. Qin, H. et al. Synthesis and characterization of unsaturated thermotropic polyesters prepared via acyclic diene metathesis polymerization. Macromolecules 37, 5239–5249 (2004).

    Article  CAS  Google Scholar 

  41. McGuire, T. M., Pérale, C., Castaing, R., Kociok-Köhn, G. & Buchard, A. Divergent catalytic strategies for the cis/trans stereoselective ring-opening polymerization of a dual cyclic carbonate/olefin monomer. J. Am. Chem. Soc. 141, 13301–13305 (2019).

    Article  CAS  Google Scholar 

  42. Stubbs, C. J., Worch, J. C., Prydderch, H., Becker, M. L. & Dove, A. P. Unsaturated poly(ester-urethanes) with stereochemically dependent thermomechanical properties. Macromolecules 53, 174–181 (2020).

    Article  CAS  Google Scholar 

  43. Lodge, T. P. Celebrating 50 years of macromolecules. Macromolecules 50, 9525–9527 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is dedicated to the memory of Robert H. Grubbs. This work was supported by Texas A&M University. The NMR facility in the Department of Chemistry and the Soft Matter Facility (RRID:SCR_022482) were utilized. We thank Umicore for the generous donation of metathesis catalysts, A. Johns for helpful discussions, J. Pribyl for insightful discussions on ADMET polymerization and P. Wei for his help with TGA/DSC analysis. We acknowledge the financial support of the National Institute of General Medical Sciences at the National Institutes of Health under Award Number R35GM138079, the Petroleum Research Fund managed by the American Chemical Society under Grant Number 60540-DNI7 and the Welch Foundation under Grant Number A-2004-20190330.

Author information

Authors and Affiliations

Authors

Contributions

T.-W.H., S.J.K. and A.P.F.T. performed the research. All authors designed the research and analysed the data. Q.M., S.J.K. and T.-W.H. wrote the paper and Supplementary Information.

Corresponding author

Correspondence to Quentin Michaudel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Kenneth Wagener, Giovanni Rojas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–60, Tables 1–16, Materials, Methods and Text.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, TW., Kempel, S.J., Felix Thayne, A.P. et al. Stereocontrolled acyclic diene metathesis polymerization. Nat. Chem. 15, 14–20 (2023). https://doi.org/10.1038/s41557-022-01060-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01060-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing