Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Towards high-performance sustainable polymers via isomerization-driven irreversible ring-opening polymerization of five-membered thionolactones

Abstract

The development of sustainable polymers that possess useful material properties competitive with existing petroleum-derived polymers is a crucial goal but remains a formidable challenge for polymer science. Here we demonstrate that irreversible ring-opening polymerization (IROP) of biomass-derived five-membered thionolactones is an effective and robust strategy for the polymerization of non-strained five-membered rings—these polymerizations are commonly thermodynamically forbidden under ambient conditions, at industrially relevant temperatures of 80–100 °C. Computational studies reveal that the selective IROP of these thionolactones is thermodynamically driven by S/O isomerization during the ring-opening process. IROP of γ-thionobutyrolactone, a representative non-strained thionolactone, affords a sustainable polymer from renewable resources that possesses external-stimuli-triggered degradability. This poly(thiolactone) also exhibits high performance, with its key thermal and mechanical properties comparing well to those of commercial petroleum-based low-density polyethylene. This IROP strategy will enable conversion of five-membered lactones, generally unachievable by other polymerization methods, into sustainable polymers with a range of potential applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conventional ROPs of BL derivatives and proposed IROP of TnBL.
Fig. 2: Three possible mechanistic pathways for the formation of PTBL, TBL and dimer.
Fig. 3: Controlled polymerization of TnBL.
Fig. 4: Physical properties of PTBL.
Fig. 5: Energy profile of tBu-P4/Ph2CHOH-mediated polymerization of TnBL.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available within the article and its Supplementary Information, and/or from the corresponding author on reasonable request.

References

  1. Schneiderman, D. K. & Hillmyer, M. A. 50th anniversary perspective: there is a great future in sustainable polymers. Macromolecules 50, 3733–3749 (2017).

    Article  CAS  Google Scholar 

  2. Zhang, X., Fevre, M., Jones, G. O. & Waymouth, R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev. 118, 839–885 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Hong, M. & Chen, E. Y.-X. Future directions for sustainable polymers. Trends Chem. 1, 148–151 (2019).

    Article  CAS  Google Scholar 

  4. Hillmyer, M. A. The promise of plastics from plants. Science 358, 868–870 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Zhu, Y., Romain, C. & Williams, C. K. Sustainable polymers from renewable resources. Nature 540, 354–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Bomgardner, M. M. Biobased polymers. Chem. Eng. News Arch. 92, 10–14 (2014).

    Article  Google Scholar 

  7. Albertsson, A.-C. & Hakkarainen, M. Designed to degrade. Science 358, 872–873 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Jehanno, C., Pérez-Madrigal, M., Demarteau, J., Sardon, H. & Dove, A. P. Organocatalysis for depolymerization. Polym. Chem. 10, 172–186 (2019).

    Article  CAS  Google Scholar 

  9. Hong, M. & Chen, E. Y.-X. Chemically recyclable polymers: a circular economy approach to sustainability. Green Chem. 19, 3692–3706 (2017).

    Article  CAS  Google Scholar 

  10. Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

    Article  Google Scholar 

  11. Wang, X.-J. & Hong, M. Lewis pair-mediated selective dimerization and polymerization of lignocellulose-based β-angelica lactone to biofuel and acrylic bioplastic. Angew. Chem. Int. Ed. 59, 2664–2668 (2020).

    Article  CAS  Google Scholar 

  12. Xiong, M., Schneiderman, D. K., Bates, F. S., Hillmyer, M. A. & Zhang, K. Scalable production of mechanically tunable block polymers from sugar. Proc. Natl Acad. Sci. USA 111, 8357–8362 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jones, G. O., Yuen, A., Wojtecki, R. J., Hedrick, J. L. & García, J. M. Computational and experimental investigations of one-step conversion of poly(carbonate)s into value-added poly(aryl ether sulfone)s. Proc. Natl Acad. Sci. USA 113, 7722–7726 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. García, J. M. et al. Recyclable, strong thermosets and organogels via paraformaldehyde condensation with diamines. Science 344, 732–735 (2014).

    Article  PubMed  Google Scholar 

  15. Häußler, M., Eck, M., Rothauer, D. & Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 590, 423–427 (2021).

    Article  PubMed  Google Scholar 

  16. Shieh, P. et al. Cleavable comonomers enable degradable, recyclable thermoset plastics. Nature 583, 542–547 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370, 437–441 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Bozell, J. J. & Petersen, G. R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “top 10” revisited. Green Chem. 12, 539–554 (2010).

    Article  CAS  Google Scholar 

  19. Geilen, F. M. A. et al. Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew. Chem. Int. Ed. 49, 5510–5514 (2010).

    Article  CAS  Google Scholar 

  20. Alonso, D. M., Wettstein, S. G. & Dumesic, J. A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem. 15, 584–595 (2013).

    Article  CAS  Google Scholar 

  21. Hong, M. & Chen, E. Y.-X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat. Chem. 8, 42–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Tang, X. et al. The quest for converting biorenewable bifunctional α-methylene-γ-butyrolactone into degradable and recyclable polyester: controlling vinyl-addition/ring-opening/cross-linking pathways. J. Am. Chem. Soc. 138, 14326–14337 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Duda, A. & Kowalski, A. in Handbook of Ring-Opening Polymerization (eds Dubois, P., Coulembier, O. & Raquez, J.-M.) Ch. 3 (Wiley-VCH, 2009).

  24. Houk, K. H., Jabbari, A., Hall, H. K. Jr. & Alemán, C. Why γ-valerolactone polymerizes and γ-butyrolactone does not. J. Org. Chem. 73, 2674–2678 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Olsén, P., Odelius, K. & Albertsson, A.-C. Thermodynamic presynthetic considerations for ring-opening polymerization. Biomacromolecules 17, 699–709 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hong, M. & Chen, E. Y.-X. Towards truly sustainable polymers: a metal-free recyclable polyester from biorenewable nonstrained γ-butyrolactone. Angew. Chem. Int. Ed. 55, 4188–4193 (2016).

    Article  CAS  Google Scholar 

  27. Zhao, N. et al. Selective ring-opening polymerization of non-strained γ-butyrolactone catalyzed by a cyclic trimeric phosphazene base. Angew. Chem. Int. Ed. 56, 12987–12990 (2017).

    Article  CAS  Google Scholar 

  28. Lin, L. et al. Nonstrained γ-butyrolactone to high-molecular-weight poly(γ-butyrolactone): facile bulk polymerization using economical ureas/alkoxides. Macromolecules 51, 9317–9322 (2018).

    Article  CAS  Google Scholar 

  29. Zhang, C.-J., Hu, L.-F., Wu, H.-L., Cao, X.-H. & Zhang, X.-H. Dual organocatalysts for highly active and selective synthesis of linear poly(γ-butyrolactone)s with high molecular weights. Macromolecules 51, 8705–8711 (2018).

    Article  CAS  Google Scholar 

  30. Shen, Y. et al. A facile method to prepare high molecular weight bio-renewable poly(γ-butyrolactone) using a strong base/urea binary synergistic catalytic system. Polym. Chem. 10, 1231–1237 (2019).

    Article  CAS  Google Scholar 

  31. Walther, P., Frey, W. & Naumann, S. Polarized olefins as enabling (co)catalysts for the polymerization of γ-butyrolactone. Polym. Chem. 9, 3674–3683 (2018).

    Article  CAS  Google Scholar 

  32. Zhu, J.-B., Watson, E. M., Tang, J. & Chen, E. Y.-X. A synthetic polymer system with repeatable chemical recyclability. Science 360, 398–403 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Zhu, J.-B. & Chen, E. Y.-X. Living coordination polymerization of a six-five bicyclic lactone to produce completely recyclable polyester. Angew. Chem. Int. Ed. 57, 12558–12562 (2018).

    Article  CAS  Google Scholar 

  34. Zhu, J.-B. & Chen, E. Y.-X. Catalyst’s sidearm-induced stereoselectivity switching in polymerization of a racemic lactone for stereocomplexed crystalline polymer with a circular life cycle. Angew. Chem. Int. Ed. 58, 1178–1182 (2019).

    Article  CAS  Google Scholar 

  35. Cywar, R. M., Zhu, J.-B. & Chen, E. Y.-X. Selective or living organopolymerization of a six-five bicyclic lactone to produce fully recyclable polyesters. Polym. Chem. 10, 3097–3106 (2019).

    Article  CAS  Google Scholar 

  36. Chung, W. J. et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518–524 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Yanagisawa, Y., Nan, Y., Okuro, K. & Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent crosslinking. Science 359, 72–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Boyd, D. A. Sulfur and its role in modern materials science. Angew. Chem. Int. Ed. 55, 15486–15502 (2016).

    Article  CAS  Google Scholar 

  39. Shi, C. et al. High-performance pan-tactic polythioesters with intrinsic crystallinity and chemical recyclability. Sci. Adv. 6, eabc0495 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yuan, J. et al. 4‑Hydroxyproline-derived sustainable polythioesters: controlled ring-opening polymerization, complete recyclability, and facile functionalization. J. Am. Chem. Soc. 141, 4928–4935 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Xiong, W. et al. Geminal dimethyl substitution enables controlled polymerization of penicillamine-derived β-thiolactones and reversed depolymerization. Chem 6, 1831–1843 (2020).

    Article  CAS  Google Scholar 

  42. Luo, M., Zhang, X.-H. & Darensbourg, D. J. Poly(monothiocarbonate)s from the alternating and regioselective copolymerization of carbonyl sulfide with epoxides. Acc. Chem. Res. 49, 2209–2219 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Smith, R. A. et al. Radical approach to thioester-containing polymers. J. Am. Chem. Soc. 141, 1446–1451 (2019).

    Article  CAS  Google Scholar 

  44. Yue, T.-J. et al. Precise synthesis of poly(thioester)s with diverse structures by copolymerization of cyclic thioanhydrides and episulfides mediated by organic ammonium salts. Angew. Chem. Int. Ed. 58, 618–623 (2019).

    Article  CAS  Google Scholar 

  45. Kikuchi, H., Tsubokawa, N. & Endo, T. First example of cationic ring-opening polymerization of γ-thionobutyrolactone. Chem. Lett. 34, 376–377 (2005).

    Article  CAS  Google Scholar 

  46. Sarazin, Y. & Carpentier, J.-F. Discrete cationic complexes for ring-opening polymerization catalysis of cyclic esters and epoxides. Chem. Rev. 115, 3564–3614 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Carpentier, J.-F. Rare-earth complexes supported by tripodal tetradentate bis(phenolate) ligands: a privileged class of catalysts for ring-opening polymerization of cyclic esters. Organometallics 34, 4175–4189 (2015).

    Article  CAS  Google Scholar 

  48. Kamber, N. E. et al. Organocatalytic ring-opening polymerization. Chem. Rev. 107, 5813–5840 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Kiesewetter, M. K., Shin, E. J., Hedrick, J. L. & Waymouth, R. M. Organocatalysis: opportunities and challenges for polymer synthesis. Macromolecules 43, 2093–2107 (2010).

    Article  CAS  Google Scholar 

  50. Naumann, S. & Dove, A. P. N-Heterocyclic carbenes as organocatalysts for polymerizations: trends and frontiers. Polym. Chem. 6, 3185–3200 (2015).

    Article  CAS  Google Scholar 

  51. Ottou, W. N., Sardon, H., Mecerreyes, D., Vignolle, J. & Taton, D. Update and challenges in organo-mediated polymerization reactions. Prog. Polym. Sci. 56, 64–115 (2016).

    Article  CAS  Google Scholar 

  52. Zhang, X., Jones, G. O., Hedrick, J. L. & Waymouth, R. M. Fast and selective ring-opening polymerizations by alkoxides and thioureas. Nat. Chem. 8, 1047–1053 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Hong, M., Chen, J. & Chen, E. Y.-X. Polymerization of polar monomers mediated by main-group Lewis acid−base pairs. Chem. Rev. 118, 10551–10616 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Sanda, F., Jirakanjana, D., Hitomi, M. & Endo, T. Anionic ring-opening polymerization of ϵ‑thionocaprolactone. Macromolecules 32, 8010–8014 (1999).

    Article  CAS  Google Scholar 

  55. Sanda, F., Jirakanjana, D., Hitomi, M. & Endo, T. Cationic ring-opening polymerization of ϵ‑thionocaprolactone: selective formation of polythioester. J. Polym. Sci. A Polym. Chem. 38, 3656–3664 (2000).

    Article  Google Scholar 

  56. Datta, P. P. & Kiesewetter, M. K. Controlled organocatalytic ring-opening polymerization of ϵ‑thionocaprolactone. Macromolecules 49, 774–780 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hong, M., Tang, X., Newell, B. S. & Chen, E. Y.-X. “Nonstrained” γ-butyrolactone-based copolyesters: copolymerization characteristics and composition-dependent (thermal, eutectic, cocrystallization, and degradation) properties. Macromolecules 50, 8469–8479 (2017).

    Article  CAS  Google Scholar 

  58. Nishikubo, T., Kameyama, A. & Kawakami, S. A novel synthesis of poly(ester-alt-sulfide)s by the ring-opening alternating copolymerization of oxiranes with γ-thiobutyrolactone using quaternary onium salts or crown ether complexes as catalysts. Macromolecules 31, 4746–4752 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Langlais, M. et al. Scope and limitations of ring-opening copolymerization of trimethylene carbonate with substituted γ-thiolactones. Polym. Chem. 9, 2769–2774 (2018).

    Article  CAS  Google Scholar 

  60. Puchelle, V. et al. Functional poly(ester-alt-sulfide)s synthesized by organo-catalyzed anionic ring-opening alternating copolymerization of oxiranes and γ‑thiobutyrolactones. Macromolecules 53, 5188–5198 (2020).

    Article  CAS  Google Scholar 

  61. Espeel, P., Goethals, F. & Du Prez, F. E. One-pot multistep reactions based on thiolactones: extending the realm of thiol-ene chemistry in polymer synthesis. J. Am. Chem. Soc. 133, 1678–1681 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Espeel, P. et al. Multifunctionalized sequence-defined oligomers from a single building block. Angew. Chem. Int. Ed. 52, 13261–13264 (2013).

    Article  CAS  Google Scholar 

  63. Espeel, P. & Du Prez, F. E. One-pot multi-step reactions based on thiolactone chemistry: a powerful synthetic tool in polymer science. Eur. Polym. J. 62, 247–272 (2015).

    Article  CAS  Google Scholar 

  64. Langlais, M., Coutelier, O. & Destarac, M. Thiolactone-functional reversible deactivation radical polymerization agents for advanced macromolecular engineering. Macromolecules 51, 4315–4324 (2018).

    Article  CAS  Google Scholar 

  65. Teator, A. J. & Leibfarth, F. A. Catalyst-controlled stereoselective cationic polymerization of vinyl ethers. Science 363, 1439–1443 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC (grant numbers 51973232, 21774141, 21821002), the Science and Technology Commission of Shanghai Municipality (grant number 19QA1411100) and the K.C. Wong Education Foundation for the study carried out at the Shanghai Institute of Organic Chemistry, and by the NSFC (grant numbers 21674014, U1862115) for the study performed at the Dalian University of Technology. We thank members of Y. Li’s group at Tianjin University for assistance with wide-angle X-ray diffraction, contact angle, dynamic mechanical analysis and tensile stress–strain measurements.

Author information

Authors and Affiliations

Authors

Contributions

P.Y., Y.S. and M.H. conceived the idea and designed the experiments. P.Y. and Y.S. performed the experiments. X.X. and Y.L. performed theoretical calculations. All of the authors participated in the data analyses and discussions, and manuscript writing. M.H. directed the project.

Corresponding author

Correspondence to Miao Hong.

Ethics declarations

Competing interests

M.H., P.Y. and Y.S. are named inventors on a Chinese patent application (number 201910972944.8) submitted by Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences that covers the preparation of high-molar-mass poly(γ-thiobutyrolactone) via isomerization-driven irreversible ring-opening polymerization as well as the aspects of its physical properties and triggered degradation. The other authors (X.X. and Y.L.) declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Hua Lu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 13C NMR spectrum of PTBL produced by tBu-P4/Ph2CHOH.

13C NMR spectrum (CDCl3) of PTBL produced by tBu-P4/Ph2CHOH (Table 1, run 6). The observation of chemical resonances at 198.04 (>C = O) and 27.88 (–S–CH2–) ppm clearly demonstrated the occurrence of IROP to form PTBL.

Extended Data Fig. 2 1H NMR spectra of PTBL sample before and after TBD-triggered degradation.

1H NMR spectra (25°C, CDCl3) of PTBL sample (Mn of 162.6 kg/mol) before (a) and after (b) TBD-triggered degradation. The quantitative conversion of PTBL into TBL, a valuable small molecule that can be employed as a versatile building block for synthesizing sulfur-contained functional materials, thus established PTBL as an external stimuli-triggered degradable polymer with a sensible end of life option.

Extended Data Fig. 3 Outlined synthetic routes to methyl-substituted TnBL derivatives.

Outlined synthetic routes to methyl-substituted TnBL derivatives from renewable resources for the synthesis of sustainable poly(thiolactone)s via IROP.

Supplementary information

Supplementary Information

Full descriptions of the methods, computational details, Cartesian coordinates of optimized geometries, Supplementary Table 1, Schemes 1 and 2 and Figs. 1–55.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, P., Sun, Y., Xu, X. et al. Towards high-performance sustainable polymers via isomerization-driven irreversible ring-opening polymerization of five-membered thionolactones. Nat. Chem. 14, 294–303 (2022). https://doi.org/10.1038/s41557-021-00817-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00817-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing