Supramolecular polymers articles within Nature Chemistry

Featured

  • Article |

    Two-dimensional covalent organic frameworks (2D COFs) enable the construction of bespoke functional materials, but designing dynamic 2D COFs is challenging. Now it has been shown that perylene-diimide-based COFs can open and close their pores upon uptake or removal of guests, while fully retaining their crystalline long-range order. Moreover, the variable COF geometry enables stimuli-responsive optoelectronic properties.

    • Florian Auras
    • , Laura Ascherl
    •  & Thomas Bein
  • News & Views |

    The concepts of multistep processes and regioselectivity — fundamental in covalent synthesis — have now been applied to the non-covalent synthesis of sequence-controlled multiblock supramolecular polymers.

    • Ghislaine Vantomme
  • Article |

    Supramolecular structures are typically formed by the one-step self-assembly of building blocks. Now, a greater level of control has been achieved using stepwise non-covalent reactions under kinetic control. Two-dimensional block supramolecular polymers with tailored compositions and sequences were synthesized, and a site selectivity that is reminiscent of regioselectivity in covalent synthesis was observed.

    • Norihiko Sasaki
    • , Jun Kikkawa
    •  & Kazunori Sugiyasu
  • Article
    | Open Access

    Modulation of surface properties and functions can be achieved through covalent and non-covalent molecular binding, but the lack of responsiveness and requirement for specific binding groups makes spatiotemporal control challenging. Now, it has been shown that adaptive insertion of a hydrophobic anchor into a poly(ethylene glycol) host is an effective non-covalent binding strategy for programmable surface functionalization.

    • Shaohua Zhang
    • , Wei Li
    •  & Daniela A. Wilson
  • Article |

    Nature uses out-of-equilibrium systems to control hierarchical assembly. Now, a dissipative chemical system has been shown to slowly release monomer DNA strands from a high-energy reservoir, regulating self-assembly by switching the mechanism of supramolecular polymerization at the single-molecule level. This process heals fibre defects, converting branched, heterogeneous networks into nanocable superstructures.

    • Felix J. Rizzuto
    • , Casey M. Platnich
    •  & Hanadi F. Sleiman
  • News & Views |

    Artificial photosynthesis represents a promising method of generating hydrogen for our clean and sustainable energy needs. Now, photocatalytic nanofibres have been developed that incorporate photosensitizers and catalysts into well-defined self-assembled structures for efficient hydrogen production.

    • Gregory I. Peterson
    • , Sanghee Yang
    •  & Tae-Lim Choi
  • Article |

    Artificial systems capable of photocatalytic hydrogen production are not typically based on precisely controlled scaffolds. Now, statistical seeded crystallization of block copolymers—bearing either a pendant cobalt catalyst or a photosensitizer—from solution has been shown to yield recyclable, colloidally stable nanofibres that can be tailored to promote photocatalytic hydrogen production from water.

    • Jia Tian
    • , Yifan Zhang
    •  & Ian Manners
  • News & Views |

    The manner in which adjacent sheets stack in layered covalent organic frameworks largely influences their material properties, including chemical stability, crystallinity and porosity. The layer stacking of a COF has now been probed locally, showing disorder that is not detected through long-range characterization.

    • Andre Mähringer
    •  & Dana D. Medina
  • Article |

    Reversible nanoscale knotting and unknotting of a molecular strand can be used to control the handedness of helical organizations at macroscopic length scales. Dopant knotted and unknotted strands induce supramolecular helical structures of opposite handedness in achiral liquid crystals, and the left- and right-handed forms can be switched in situ.

    • Nathalie Katsonis
    • , Federico Lancia
    •  & Fredrik Schaufelberger
  • Article |

    Helical structures play important roles in biological processes, yet their aggregation into fibres—which can in turn form gels—is poorly understood. Now, the self-assembly of a linear pentakis (urea) peptidomimetic compound into helices that further intertwine into well-defined braided structures has been described and analysed through braid theory. Homochiral gels may be formed by exposing the precursor sol to a chiral material.

    • Christopher D. Jones
    • , Henry T. D. Simmons
    •  & Jonathan W. Steed
  • Article |

    Membranes with high selectivity and high permeance that allows rapid passage of solvent molecules are desirable for efficient separation processes. Microporous conjugated-polymer membranes have now been fabricated through surface-initiated polymerization. These membranes are capable of ultrafast organic-solvent nanofiltration because of the high porosity and pore interconnectivity originating from the rigid skeleton.

    • Bin Liang
    • , Hui Wang
    •  & Zhiyong Tang
  • Article |

    Biological systems are made up of complex networks that can respond to stimuli and function across relatively long distances in molecular terms. Now, it has been shown that a local disruption (the isomerization of just a single azobenzene unit) at the interface of supramolecular glassy polymersomes can immediately spread through over 500 bonds, significantly changing membrane permeability and enabling controllable release of guest molecules.

    • Mijanur Rahaman Molla
    • , Poornima Rangadurai
    •  & S. Thayumanavan
  • Article |

    An attractive feature of supramolecular polymers is their reversibility — they typically depolymerize upon heating. Now, in the presence of a scavenger molecule, a metalloporphyrin derivative bearing eight amide-containing side chains has been shown to undergo supramolecular polymerization on heating as well as cooling through π-stacking and multivalent hydrogen-bonding interactions.

    • Kotagiri Venkata Rao
    • , Daigo Miyajima
    •  & Takuzo Aida
  • Article |

    Main-chain polymetallocenes are typically static in nature due to strong metal–ligand bonding. Now, it has been shown that such polymers based on nickelocene are dynamic due to weaker nickel–cyclopentadienyl interactions, and at low concentration or at elevated temperature, depolymerization to the moderately strained monomer occurs.

    • Rebecca A. Musgrave
    • , Andrew D. Russell
    •  & Ian Manners
  • Article |

    Unlike in biomolecular systems, synthetic self-assembly is largely spontaneous, thus limiting the complexity and functionality of the materials one can create. Now, self-assembly under out-of-equilibrium conditions is demonstrated for a metastable supramolecular system. Differentiation of nanoparticles into nanofibres and nanosheets — with electronically distinct states — is achieved through kinetic control, illustrating pathway-dependent material properties.

    • Tomoya Fukui
    • , Shinnosuke Kawai
    •  & Kazunori Sugiyasu
  • Article |

    Effective regulation over the motion of self-propelled micro- and nanomotors is a challenging proposition. Now, self-assembled stomatocyte nanomotors with thermoresponsive polymer brushes have been designed that sense changes in local temperature and regulate the accessibility of the hydrogen peroxide fuel — thereby adjusting the speed and behaviour of nanomotor itself.

    • Yingfeng Tu
    • , Fei Peng
    •  & Daniela A. Wilson
  • Article |

    Designing self-sorting events, and understanding their dynamics, in synthetic supramolecular assembly is a promising route towards complex, functional artificial systems. The formation of self-sorted supramolecular nanofibres has now been imaged in situ, in real time, by confocal laser microscopy. A stochastic, non-synchronous fibre formation through a cooperative mechanism was observed.

    • Shoji Onogi
    • , Hajime Shigemitsu
    •  & Itaru Hamachi
  • Article |

    Photoresponsive wet- and dry-type actuators can be built up from rotaxane-like structures through the polycondensation of four-armed polyethylene glycols with [c2]daisy chains comprised of cyclodextrin rings and azobenzene side chains. The response of the dry-type (xerogel) actuator to UV light was found to be more than 10,000 times faster than the wet-type (hydrogel) actuator.

    • Kazuhisa Iwaso
    • , Yoshinori Takashima
    •  & Akira Harada
  • Article |

    Polymers that are both elastic and self-healing are desirable for a variety of applications, but often rely on hydrogen bonding which makes them moisture-sensitive. Now, by incorporating metal–ligand interactions with different bond strengths into flexible polymer backbones, an elastomer has been devised that combines high stretchability and high dielectric strength with autonomous self-healing and mechanical actuation capabilities.

    • Cheng-Hui Li
    • , Chao Wang
    •  & Zhenan Bao
  • Article |

    Gels formed by metal–ligand coordination typically consist of single metal ions linked together by polymer chains. Now, metal–organic cages have been used as junctions instead. A gel was prepared that features a large number of polymer chains at each junction, including loops that further serve to functionalize the material.

    • Aleksandr V. Zhukhovitskiy
    • , Mingjiang Zhong
    •  & Jeremiah A. Johnson
  • News & Views |

    A patterned, spatially resolved gel has now been devised. The two-component gel is formed by sequential assembly of two independent networks of fibres, and the subsequent selective removal of one network by irradiation.

    • Haridas Kar
    •  & Suhrit Ghosh
  • Article |

    Multicomponent supramolecular hydrogels have been prepared using a self-sorting mixture of two different gelators—one of which is photosensitive. Irradiation of the gels through a mask leads to the photosensitive network being selectively removed by a light-triggered gel-to-sol transition in a process that can be used to produce patterned gels with spatially controlled properties.

    • Emily R. Draper
    • , Edward G. B. Eden
    •  & Dave J. Adams
  • News & Views |

    Supramolecular polymerizations typically proceed through stepwise intermolecular mechanisms, concomitant with many side reactions to yield aggregates of unpredictable size, shape and mass. Now, a chain-growth strategy is shown to allow assembly of molecules into supramolecular chain structures endowed with precisely controlled characteristics.

    • Renren Deng
    •  & Xiaogang Liu
  • News & Views |

    A supramolecular polymer comprising stacked artificial chromophores to which zinc(II) complexes are appended is able to respond to enzymatic hydrolysis in aqueous solution. The assembly of molecules can twist reversibly and quickly in response to changes in the type of adenosine phosphate present.

    • David B. Amabilino
  • Review Article |

    Ferroelectric materials hold much promise for the development of devices such as nonvolatile memories, sensors and nonlinear optic materials. This Review describes the molecular features required to devise organic molecular ferroelectrics, and presents the supramolecular chemistry strategies available for controlling molecular organization and dynamics across different length scales.

    • Alok S. Tayi
    • , Adrien Kaeser
    •  & Samuel I. Stupp
  • Perspective |

    Biological systems have evolved sophisticated machinery to assemble polymeric receptors capable of molecular recognition. Although such precise levels of structural control are currently inaccessible to chemists, impressive progress has been made towards the realization of wholly synthetic analogues of antibodies and other proteins. Protein structure from H. Li et al. Biochemistry 33, 11734–11744 (1994); © American Chemical Society.

    • Clare S. Mahon
    •  & David A. Fulton
  • News & Views |

    Protein fibril formation is involved in many human diseases and thus has been mechanistically elucidated in the context of understanding — and in turn treating — them. This biological phenomenon has now also inspired the design of a supramolecular system that undergoes living polymerization.

    • Frank Würthner
  • Article |

    Self-organization that occurs far from thermodynamic equilibrium is ubiquitous in nature but has remained challenging to control in synthetic supramolecular systems. A complex system has now been devised that displays such behaviour. Porphyrin derivative monomers undergo living supramolecular polymerization, a reaction underpinned by the interplay of two supramolecular polymerization pathways.

    • Soichiro Ogi
    • , Kazunori Sugiyasu
    •  & Masayuki Takeuchi
  • Article |

    The ability to self-heal is an important survival feature in nature, with in-built systems working to correct faults and extend the lifetimes of organisms. Now, self-healing chemistry has been applied to overcome the short cycling lifetime of high-capacity rechargeable lithium-ion batteries with silicon-microparticle anodes that suffer from mechanical fractures.

    • Chao Wang
    • , Hui Wu
    •  & Zhenan Bao
  • News & Views |

    Polymer vesicles have been constructed that entrap platinum nanoparticles in their outer surface. These serve to break down a fuel of hydrogen peroxide, generating water and oxygen and in turn inducing a propulsive effect.

    • Jonathan Howse
  • News & Views |

    Two readily accessible synthetic building blocks are shown to form a quadruply hydrogen-bonded heterodimer that exhibits exceptional stability and offers new opportunities for the construction of supramolecular assemblies and polymers.

    • Andrew J. Wilson
  • Article |

    The stability of multiply hydrogen-bonded complexes can be influenced significantly by secondary electrostatic interactions between the pairs of atoms in adjacent hydrogen bonds. Now, a quadruple hydrogen-bonding array in which all of the donors are located in one component and all of the acceptors in the other has been shown to form complexes that are exceptionally stable.

    • Barry A. Blight
    • , Christopher A. Hunter
    •  & Patrick I. T. Thomson
  • Article |

    Benzene-1,3,5-tricarboxamides are known to self-assemble via intramolecular hydrogen bonding into helical columnar aggregates. Here it is shown that the introduction of a stereocentre by an isotopic substitution — replacing hydrogen for deuterium on the methylene groups next to the amide — is sufficient to direct the helicity of the formed aggregate.

    • Seda Cantekin
    • , Diederik W. R. Balkenende
    •  & E. W. Meijer
  • Article |

    Interlocked molecules commonly include one (or more) monocyclic component — examples comprising bicyclic or tricyclic structures are much more rare and usually involve metal–ligand coordination or additional templates. Now, the dynamic self-assembly of twenty organic molecules in a one-pot synthesis has been shown to produce tetrahedral covalent cages, which interpenetrate during the process to form triply interlocked dimers.

    • Tom Hasell
    • , Xiaofeng Wu
    •  & Andrew I. Cooper