Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Scalable and continuous access to pure cyclic polymers enabled by ‘quarantined’ heterogeneous catalysts

A Publisher Correction to this article was published on 21 September 2022

This article has been updated

Abstract

Cyclic polymers are topologically interesting and envisioned as a lubricant material. However, scalable synthesis of pure cyclic polymers remains elusive. The most straightforward way is to recover a used catalyst after the synthesis of cyclic polymers and reuse it. Unfortunately, this is demanding because of the catalyst’s vulnerability and inseparability from polymers, which reduce the practicality of the process. Here we develop a continuous circular process, where polymerization, polymer separation and catalyst recovery happen in situ, to dispense a pure cyclic polymer after bulk ring-expansion metathesis polymerization of cyclopentene. It is enabled by introducing silica-supported ruthenium catalysts and newly designed glassware. Different depolymerization kinetics of the cyclic polymer from its linear analogue are also discussed. This process minimizes manual labour, maximizes the security of vulnerable catalysts and guarantees the purity of cyclic polymers, thereby showcasing a prototype of a scalable access to cyclic polymers with increased turnovers (≥415,000) of precious catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: REMP and purification process for the preparation of cyclic polymers.
Fig. 2: REMP of CP with the immobilized ruthenium carbene catalysts.
Fig. 3: Importance of monomer purity for REMP.
Fig. 4: ‘Monomer in, Polymer out’.
Fig. 5: Distancing effect.
Fig. 6: Topology dependence of depolymerization.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and its Supplementary Information. Source data are provided with this paper.

Change history

References

  1. González-Reyes, G. A., Bayo-Besteiro, S., Vich Llobet, J. & Añel, J. A. Environmental and economic constraints on the use of lubricant oils for wind and hydropower generation: the case of NATURGY. Sustainability 12, 4242 (2020).

    Article  Google Scholar 

  2. Wakiru, J., Pintelon, L., Muchiri, P. N., Chemweno, P. K. & Mburu, S. Towards an innovative lubricant condition monitoring strategy for maintenance of ageing multi-unit systems. Reliab. Eng. Syst. 204, 107200 (2020).

    Article  Google Scholar 

  3. Zolper, T. et al. Lubrication properties of polyalphaolefin and polysiloxane lubricants: molecular structure–tribology relationships. Tribol. Lett. 48, 355–365 (2012).

    CAS  Google Scholar 

  4. Greaves, M. Pressure viscosity coefficients and traction properties of synthetic lubricants for wind turbine gear systems. Lubr. Sci. 24, 75–83 (2012).

    Article  CAS  Google Scholar 

  5. Ray, S., Rao, P. V. C. & Choudary, N. V. Poly-α-olefin-based synthetic lubricants: a short review on various synthetic routes. Lubr. Sci. 24, 23–44 (2012).

    Article  CAS  Google Scholar 

  6. Martini, A., Ramasamy, U. S. & Len, M. Review of viscosity modifier lubricant additives. Tribol. Lett. 66, 58 (2018).

    Article  Google Scholar 

  7. Morgan, S., Ye, Z., Subramanian, R. & Zhu, S. Higher-molecular-weight hyperbranched polyethylenes containing crosslinking structures as lubricant viscosity-index improvers. Polym. Eng. Sci. 50, 911–918 (2010).

    Article  CAS  Google Scholar 

  8. Ver Strate, G. & Struglinski, M. J. in Polymers as Rheology Modifiers, ACS Symposium Series Vol. 462 (eds Schulz, D. N. & Glass, J. E.) Ch. 15 (American Chemical Society, 1991).

  9. Peterson, G. I. & Choi, T.-L. The influence of polymer architecture in polymer mechanochemistry. Chem. Commun. 57, 6465–6474 (2021).

    Article  CAS  Google Scholar 

  10. Lin, Y., Zhang, Y., Wang, Z. & Craig, S. L. Dynamic memory effects in the mechanochemistry of cyclic polymers. J. Am. Chem. Soc. 141, 10943–10947 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Bielawski, C. W., Benitez, D. & Grubbs, R. H. An ‘endless’ route to cyclic polymers. Science 297, 2041–2044 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Xia, Y. et al. Ring-expansion metathesis polymerization: catalyst-dependent polymerization profiles. J. Am. Chem. Soc. 131, 2670–2677 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boydston, A. J., Xia, Y., Kornfield, J. A., Gorodetskaya, I. A. & Grubbs, R. H. Cyclic ruthenium-alkylidene catalysts for ring-expansion metathesis polymerization. J. Am. Chem. Soc. 130, 12775–12782 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xia, Y., Boydston, A. J. & Grubbs, R. H. Synthesis and direct imaging of ultrahigh molecular weight cyclic brush polymers. Angew. Chem. Int. Ed. 50, 5882–5885 (2011).

    Article  CAS  Google Scholar 

  15. Boydston, A. J., Holcombe, T. W., Unruh, D. A., Fréchet, J. M. J. & Grubbs, R. H. A direct route to cyclic organic nanostructures via ring-expansion metathesis polymerization of a dendronized macromonomer. J. Am. Chem. Soc. 131, 5388–5389 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bielawski, C. W., Benitez, D. & Grubbs, R. H. Synthesis of cyclic polybutadiene via ring-opening metathesis polymerization: the importance of removing trace linear contaminants. J. Am. Chem. Soc. 125, 8424–8425 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, T.-W., Huang, P.-R., Chow, J. L., Kaminsky, W. & Golder, M. R. A cyclic ruthenium benzylidene initiator platform enhances reactivity for ring-expansion metathesis polymerization. J. Am. Chem. Soc. 143, 7314–7319 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Miao, Z. et al. Cyclic polyacetylene. Nat. Chem. 13, 792–799 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McGraw, M. L., Clarke, R. W. & Chen, E. Y. X. Synchronous control of chain length/sequence/topology for precision synthesis of cyclic block copolymers from monomer mixtures. J. Am. Chem. Soc. 143, 3318–3322 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Niu, W. et al. Polypropylene: now available without chain ends. Chem 5, 237–244 (2019).

    Article  CAS  Google Scholar 

  21. Roland, C. D., Li, H., Abboud, K. A., Wagener, K. B. & Veige, A. S. Cyclic polymers from alkynes. Nat. Chem. 8, 791–796 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Lidster, B. J. et al. Macrocyclic poly(p-phenylenevinylene)s by ring expansion metathesis polymerisation and their characterisation by single-molecule spectroscopy. Chem. Sci. 9, 2934–2941 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, K., Lackey, M. A., Wu, Y. & Tew, G. N. Universal cyclic polymer templates. J. Am. Chem. Soc. 133, 6906–6909 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Edwards, J. P., Wolf, W. J. & Grubbs, R. H. The synthesis of cyclic polymers by olefin metathesis: achievements and challenges. J. Polym. Sci. A Polym. Chem. 57, 228–242 (2018).

    Article  Google Scholar 

  25. Chang, Y. A. & Waymouth, R. M. Recent progress on the synthesis of cyclic polymers via ring-expansion strategies. J. Polym. Sci. A Polym. Chem. 55, 2892–2902 (2017).

    Article  CAS  Google Scholar 

  26. Haque, F. M. & Grayson, S. M. The synthesis, properties and potential applications of cyclic polymers. Nat. Chem. 12, 433–444 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Golba, B., Benetti, E. M. & De Geest, B. G. Biomaterials applications of cyclic polymers. Biomaterials 267, 120468 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Miao, Z. et al. Semi-conducting cyclic copolymers of acetylene and propyne. React. Funct. Polym. 169, 105088 (2021).

    Article  CAS  Google Scholar 

  29. Tuba, R. Synthesis of cyclopolyolefins via ruthenium catalyzed ring-expansion metathesis polymerization. Pure Appl. Chem. 86, 1685–1693 (2014).

    Article  CAS  Google Scholar 

  30. Jawiczuk, M., Marczyk, A. & Trzaskowski, B. Decomposition of ruthenium olefin metathesis catalyst. Catalysts 10, 887 (2020).

    Article  CAS  Google Scholar 

  31. Allen, D. P., Van Wingerden, M. M. & Grubbs, R. H. Well-defined silica-supported olefin metathesis catalysts. Org. Lett. 11, 1261–1264 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Dewaele, A., Van Berlo, B., Dijkmans, J., Jacobs, P. A. & Sels, B. F. Immobilized Grubbs catalysts on mesoporous silica materials: insight into support characteristics and their impact on catalytic activity and product selectivity. Catal. Sci. Technol. 6, 2580–2597 (2016).

    Article  CAS  Google Scholar 

  33. Hejl, A., Scherman, O. A. & Grubbs, R. H. Ring-opening metathesis polymerization of functionalized low-strain monomers with ruthenium-based catalysts. Macromolecules 38, 7214–7218 (2005).

    Article  CAS  Google Scholar 

  34. Neary, W. J. & Kennemur, J. G. Polypentenamer renaissance: challenges and opportunities. ACS Macro Lett. 8, 46–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Tuba, R. & Grubbs, R. H. Ruthenium catalyzed equilibrium ring-opening metathesis polymerization of cyclopentene. Polym. Chem. 4, 3959–3962 (2013).

    Article  CAS  Google Scholar 

  36. Neary, W. J. & Kennemur, J. G. Variable temperature ROMP: leveraging low ring strain thermodynamics to achieve well-defined polypentenamers. Macromolecules 50, 4935–4941 (2017).

    Article  CAS  Google Scholar 

  37. Mulhearn, W. D. & Register, R. A. Synthesis of narrow-distribution, high-molecular-weight ROMP polycyclopentene via suppression of acyclic metathesis side reactions. ACS Macro Lett. 6, 112–116 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Lee, L.-B. W. & Register, R. A. Acyclic metathesis during ring-opening metathesis polymerization of cyclopentene. Polymer 45, 6479–6485 (2004).

    Article  CAS  Google Scholar 

  39. Ji, S., Hoye, T. R. & Macosko, C. W. Controlled synthesis of high molecular weight telechelic polybutadienes by ring-opening metathesis polymerization. Macromolecules 37, 5485–5489 (2004).

    Article  CAS  Google Scholar 

  40. Obligacion, J. V. & Chirik, P. J. Bis(imino)pyridine cobalt-catalyzed alkene isomerization–hydroboration: a strategy for remote hydrofunctionalization with terminal selectivity. J. Am. Chem. Soc. 135, 19107–19110 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Ulman, M. & Grubbs, R. H. Ruthenium carbene-based olefin metathesis initiators: catalyst decomposition and longevity. J. Org. Chem. 64, 7202–7207 (1999).

    Article  CAS  Google Scholar 

  42. Torre Iii, M., Mulhearn, W. D. & Register, R. A. Ring-opening metathesis copolymerization of cyclopentene above and below its equilibrium monomer concentration. Macromol. Chem. Phys. 219, 1800030 (2018).

    Article  Google Scholar 

  43. Szczepaniak, G., Kosiński, K. & Grela, K. Towards ‘cleaner’ olefin metathesis: tailoring the NHC ligand of second generation ruthenium catalysts to afford auxiliary traits. Green Chem. 16, 4474–4492 (2014).

    Article  CAS  Google Scholar 

  44. Coates, G. W. & Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    Article  CAS  Google Scholar 

  45. Neary, W. J., Isais, T. A. & Kennemur, J. G. Depolymerization of bottlebrush polypentenamers and their macromolecular metamorphosis. J. Am. Chem. Soc. 141, 14220–14229 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Yuan, J., Giardino, G. J. & Niu, J. Metathesis cascade-triggered depolymerization of enyne self-immolative polymers. Angew. Chem. Int. Ed. 60, 24800–24805 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R. H. Grubbs passed away on 19th December 2021 and was a corresponding author when the article was first submitted. This work is financially supported by the National Science Foundation (CHE#1807154) and the Creative Research Initiative Grant. N. Hart at Caltech Glass Shop is gratefully acknowledged for the glass blowing. S. Hwang at Caltech Solid State NMR Facility is thanked for the solid-state NMR. We thank NCIRF at Seoul National University for supporting headspace gas chromatography–mass spectrometry experiments. Y. Xu (Peking University), J. H. Ko (Caltech), J.-A. Song (Samsung), Y.-J. Jang (University of Minnesota) and D. Allen (Materia) are acknowledged for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

R.H.G. and K.-Y.Y. conceived and designed the project. R.H.G. and T.-L.C. directed the project and provided valuable input. K.-Y.Y., Q.G. and J.P.E. synthesized the catalysts. K.-Y.Y. designed the glassware. K.-Y.Y. and Q.G. conducted polymer synthesis. K.-Y.Y., J.N. and Q.G. characterized the polymers. J.N. performed depolymerization experiments. R.T. demonstrated the heterogeneous cyclic polymer process. All authors analysed the data and discussed the results. K.-Y.Y. wrote the manuscript and then all authors reviewed and commented on it.

Corresponding author

Correspondence to Tae-Lim Choi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Matthew Golder, Farihah Haque and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Tables 1–6 and Sections 1–18.

Source data

Source Data Fig. 3

Data for plots (Fig. 3c,d).

Source Data Fig. 4

Data for plots (Fig. 4c,d).

Source Data Fig. 5

Data for Fig. 5b.

Source Data Fig. 6

Data for Fig. 6a.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, KY., Noh, J., Gan, Q. et al. Scalable and continuous access to pure cyclic polymers enabled by ‘quarantined’ heterogeneous catalysts. Nat. Chem. 14, 1242–1248 (2022). https://doi.org/10.1038/s41557-022-01034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01034-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing