Physics articles within Nature Physics

Featured

  • Article |

    Understanding the mechanism by which magnons—the quanta of spin waves—propagate is important for developing practical devices. Now it is shown that long-range dipole–dipole interactions mediate the propagation in a van der Waals antiferromagnet.

    • Yue Sun
    • , Fanhao Meng
    •  & Joseph Orenstein
  • News & Views |

    Multiple mechanisms can create electrons with reduced kinetic energy in solids. Combining these mechanisms now appears as a promising route to enhancing quantum effects in flat band materials.

    • Priscila F. S. Rosa
    •  & Filip Ronning
  • News & Views |

    Phonons do not carry spin or charge, but they can couple to an external magnetic field and cause a sizable transverse thermal gradient. Experiments suggest that phonon handedness is a widespread effect in magnetic insulators with impurities.

    • Valentina Martelli
  • Article |

    Physical ageing in glassy materials can be described in a linear way through the concept of material time. Multispeckle dynamic light scattering is now shown to provide experimental access to the material time, in terms of which fluctuations become statistically reversible.

    • Till Böhmer
    • , Jan P. Gabriel
    •  & Thomas Blochowicz
  • Article |

    Observations of strong electron correlation effects have been mostly confined to compounds containing f orbital electrons. Now, the study of the 3d pyrochlore metal CuV2S4 reveals that similar effects can be induced by flat-band engineering.

    • Jianwei Huang
    • , Lei Chen
    •  & Ming Yi
  • News & Views |

    Experiments with unprecedented energy and momentum resolution reveal the nature of the pairing symmetry in KFe2As2 and pave the way for a unified theoretical description of unconventional superconductivity in iron-based materials.

    • Norman Mannella
  • Article
    | Open Access

    Quantum gates require controlled interactions between different degrees of freedom. A tunable coupling has now been demonstrated between the phonon modes of a mechanical resonator designed for storing and manipulating quantum information.

    • Uwe von Lüpke
    • , Ines C. Rodrigues
    •  & Yiwen Chu
  • Research Briefing |

    Studies of a biological active nematic fluid reveal a spontaneous self-constraint that arises between self-motile topological defects and mesoscale coherent flow structures. The defects follow specific contours of the flow field, on which vorticity and strain rate balance, and hence, contrary to expectation, they break mirror symmetry.

  • Article |

    Time crystals spontaneously produce periodic oscillations that are robust to perturbations. A time crystal phase with a long coherence time has now been produced using the electron and nuclear spins of a semiconductor sample.

    • A. Greilich
    • , N. E. Kopteva
    •  & M. Bayer
  • Article |

    Dense suspensions are granular materials suspended in a liquid at high packing fractions, exhibiting high viscosity. The latter is now shown to be related to the formation of a network of rigid clusters at large shear stress.

    • Michael van der Naald
    • , Abhinendra Singh
    •  & Heinrich M. Jaeger
  • Article |

    When applying sufficient strain, the flow of dense granular matter becomes critical. It is now shown that this state corresponds to random loose packing for spheres with different friction coefficients and that these packings can be mapped onto the frictionless hard-sphere system.

    • Yi Xing
    • , Ye Yuan
    •  & Yujie Wang
  • Article |

    Inducing coherent interactions between distinct magnon modes—collective excitations of magnetic order—has been challenging. A canted antiferromagnet has demonstrated coherent magnon upconversion induced by terahertz laser pulses.

    • Zhuquan Zhang
    • , Frank Y. Gao
    •  & Keith A. Nelson
  • Article |

    Raman sideband cooling is a method used to prepare atoms and ions in their vibrational ground state. This technique has now been extended to molecules trapped in optical tweezer arrays.

    • Yukai Lu
    • , Samuel J. Li
    •  & Lawrence W. Cheuk
  • Article
    | Open Access

    The transition from a metastable state to the ground state in classical many-body systems is mediated by bubble nucleation. This transition has now been experimentally observed in a quantum setting using coupled atomic superfluids.

    • A. Zenesini
    • , A. Berti
    •  & G. Ferrari
  • Article |

    The phase diagram of confined ice is different from that of bulk ice. Simulations now reveal several 2D ice phases and show how strong nuclear quantum effects result in rich proton dynamics in 2D confined ices.

    • Jian Jiang
    • , Yurui Gao
    •  & Xiao Cheng Zeng
  • News & Views |

    Quasicrystals are ordered but not periodic, which makes them fascinating objects at the interface between order and disorder. Experiments with ultracold atoms zoom in on this interface by driving a quasicrystal and exploring its fractal properties.

    • Julian Léonard
  • Article |

    The kernel method in machine learning can be implemented on near-term quantum computers. A 27-qubit device has now been used to solve learning problems using kernels that have the potential to be practically useful.

    • Jennifer R. Glick
    • , Tanvi P. Gujarati
    •  & Kristan Temme
  • Article |

    In quasi-crystals, constituents do not form spatially periodic patterns, but their structures still give rise to sharp diffraction patterns. Now, quasi-crystalline patterns are found in a system of spherical macroscopic grains vibrating on a substrate.

    • A. Plati
    • , R. Maire
    •  & G. Foffi
  • Article
    | Open Access

    Non-Hermitian systems can be described in terms of gain and loss with a coupled environment—a hard feature to tune in quantum devices. Now an experiment shows non-Hermitian topology in a quantum Hall ring without relying on gain and loss.

    • Kyrylo Ochkan
    • , Raghav Chaturvedi
    •  & Ion Cosma Fulga
  • Article
    | Open Access

    Active flows in biological systems swirl. A coupling between active flows, elongated deformations and defect dynamics helps preserve self-organised structures against disordered swirling.

    • Louise C. Head
    • , Claire Doré
    •  & Tyler N. Shendruk
  • Article
    | Open Access

    Phases of matter can host different transport behaviours, ranging from diffusion to localization. Anomalous transport has now been observed in an interacting Bose gas in a one-dimensional lattice subject to a pulsed incommensurate potential.

    • Toshihiko Shimasaki
    • , Max Prichard
    •  & David M. Weld
  • Article
    | Open Access

    Electric polarization is well defined for insulators but not for metals. Electric-like polarization is now realized via inhomogeneous lattice strain in metallic SrRuO3, generating a pseudo-electric field. This field affects the material’s electronic bands.

    • Wei Peng
    • , Se Young Park
    •  & Daesu Lee
  • Article |

    The strengths of connections in networks of neurons are heavy-tailed, with some neurons connected much more strongly than most. Now a simple network model can explain how this heavy-tailed connectivity emerges across four different species.

    • Christopher W. Lynn
    • , Caroline M. Holmes
    •  & Stephanie E. Palmer
  • Article |

    Topological features such as modularity and small-worldness are common in real-world networks. The emergence of such features may be driven by a trade-off between information exchange and response diversity that resembles thermodynamic efficiency.

    • Arsham Ghavasieh
    •  & Manlio De Domenico
  • Editorial |

    Two-dimensional crystals have revolutionized fundamental research across a staggering range of disciplines. We take stock of the progress gained after twenty years of work.

  • News & Views |

    Scalable quantum computers require quantum error-correcting codes that can robustly store information. Exploiting the structure of well-known classical codes may help create more efficient approaches to quantum error correction.

    • Anirudh Krishna
  • Measure for Measure |

    Quantum technologies change our notion of measurement. Chenyu Wang elaborates on how quantum squeezing enhances the precision of gravitational-wave interferometers.

    • Chenyu Wang
  • Article
    | Open Access

    External driving of qubits can exploit their nonlinearity to generate different forms of interqubit interactions, broadening the capabilities of the platform.

    • Long B. Nguyen
    • , Yosep Kim
    •  & Irfan Siddiqi
  • Article
    | Open Access

    Large quantum computers will require error correcting codes, but most proposals have prohibitive requirements for overheads in the number of qubits, processing time or both. A way to combine smaller codes now gives a much more efficient protocol.

    • Hayata Yamasaki
    •  & Masato Koashi
  • News & Views |

    Optical atomic clocks are extremely accurate sensors despite the poor use of their resources. A parallel quantum control approach might help to optimize the resources of optical atomic clocks, which could lead to an exponential improvement in their performance.

    • Simone Colombo
  • Article
    | Open Access

    Addressing optical transitions at the level of a single site is crucial to unlock the potential of quantum computers and atomic clocks. A scheme based on atom rearrangement now demonstrates such control with demonstrable metrological benefits.

    • Adam L. Shaw
    • , Ran Finkelstein
    •  & Manuel Endres
  • News & Views |

    Precise frequencies of nearly forbidden transitions have been ascertained in the simplest molecule, the molecular hydrogen ion. This work offers a new perspective on precision measurements and fundamental physical tests with molecular spectroscopy.

    • Xin Tong