Biological physics articles within Nature Physics

Featured

  • Research Briefing |

    The nuclear pore complex of eukaryotic cells senses the mechanical directionality of translocating proteins, favouring the passage of those that have a leading mechanically labile region. Adding an unstructured, mechanically weak peptide tag to a translocating protein increases its rate of nuclear import and accumulation, suggesting a biotechnological strategy to enhance the delivery of molecular cargos into the cell nucleus.

  • Article |

    The occurrence of propagating spiral waves in multicellular organisms is associated with key biological functions. Now this type of wave has also been observed in dense bacterial populations, probably resulting from non-reciprocal cell–cell interactions.

    • Shiqi Liu
    • , Ye Li
    •  & Yilin Wu
  • Measure for Measure |

    Adaptive optics allows scientists to correct for distortions of an image caused by the scattering of light. Anita Chandran illuminates the nature of the technique.

    • Anita Mary Chandran
  • Research Briefing |

    Studies of a biological active nematic fluid reveal a spontaneous self-constraint that arises between self-motile topological defects and mesoscale coherent flow structures. The defects follow specific contours of the flow field, on which vorticity and strain rate balance, and hence, contrary to expectation, they break mirror symmetry.

  • Article
    | Open Access

    Active flows in biological systems swirl. A coupling between active flows, elongated deformations and defect dynamics helps preserve self-organised structures against disordered swirling.

    • Louise C. Head
    • , Claire Doré
    •  & Tyler N. Shendruk
  • Article |

    The strengths of connections in networks of neurons are heavy-tailed, with some neurons connected much more strongly than most. Now a simple network model can explain how this heavy-tailed connectivity emerges across four different species.

    • Christopher W. Lynn
    • , Caroline M. Holmes
    •  & Stephanie E. Palmer
  • News & Views |

    Orderly or coherent multicellular flows are fundamental in biology, but their triggers are not understood. In epithelial tissues, the tug-of-war between cells is now shown to lead to intrinsic asymmetric distributions in cell polarities that drive such flows.

    • Guillermo A. Gomez
  • News & Views |

    Networks of dynamic actin filaments and myosin motors, confined in cell-like droplets, drive diverse spatiotemporal patterning of contractile flows, waves, and spirals. This multiscale active sculpting is tuned by the system dynamics and size.

    • Rae M. Robertson-Anderson
  • Editorial |

    Many advances in biological physics result from multidisciplinary collaborations. We celebrate the physics of life with a collection of articles that offer insight into successful interactions between researchers from different fields.

  • Comment |

    Fluid flows play a key part in living systems. Cross-disciplinary engagement between fluid physics and biology greatly benefits both fields.

    • Kirsty Y. Wan
  • Research Briefing |

    An approach combining single-cell imaging, agent-based simulations, and continuum mechanics theory is used to observe the effect of environmental stiffness on biofilm development. These measurements indicate that confined biofilms behave as active nematics, in which the internal organization and cell lineage are controlled by the shape and boundary of the biofilm.

  • Article |

    Confined biofilms can shape themselves and their boundary to modify their internal organisation. This mechanism could inform the development of active materials that control their own geometry.

    • Japinder Nijjer
    • , Changhao Li
    •  & Jing Yan
  • Article |

    Wrinkling of cell nuclei is associated with disease. During development, the nucleus behaves like a sheet of paper and the wrinkling amplitude can be manipulated without changing its pattern.

    • Jonathan A. Jackson
    • , Nicolas Romeo
    •  & Jasmin Imran Alsous
  • News & Views |

    • Bart Verberck
  • News & Views |

    The liquid-crystal-like order of cells in epithelial tissues aids rearrangements, but there is disagreement over the dominant liquid crystal phase. Now, a unified approach reveals that two distinct symmetries dominate at different scales.

    • Daniel Beller
  • Letter |

    Cells in a tissue layer arrange themselves in orientationally ordered structures. Now two types of liquid crystalline order have been shown to coexist, with nematic order dominating large length scales and hexatic order dominating small length scales.

    • Josep-Maria Armengol-Collado
    • , Livio Nicola Carenza
    •  & Luca Giomi
  • Comment |

    Physics of Life research in the UK is transforming scientific insight and translational impact. Here I discuss its disruptive potential and barriers to interdisciplinary research through the lens of the activities of one of its pioneers, Tom McLeish.

    • Mark C. Leake
  • News & Views |

    The two-component bacterial MinDE protein system is the simplest biological pattern-forming system ever reported. Now, it establishes a mechanochemical feedback loop fuelling the persistent motion of liposomes.

    • Kerstin Göpfrich
  • Article |

    Active matter exhibits positional coherence in addition to the well-known orientational order. It is now shown that coherent structures in active nematics—made of dynamical attractors and repellers—form, move and deform, steered by topological defects.

    • Mattia Serra
    • , Linnea Lemma
    •  & L. Mahadevan
  • News & Views |

    A biomolecular motor exploits a rigid-to-flexible transition of a protein tether, which allows thermal fluctuations to draw together vesicle membranes. This entropic motor helps traffic material into and around cells.

    • Shamreen Iram
    •  & Michael Hinczewski
  • Article
    | Open Access

    Tests of the predictions of the renormalization group in biological experiments have not yet been decisive. Now, a study on the collective dynamics of insect swarms provides a long-sought match between experiment and theory.

    • Andrea Cavagna
    • , Luca Di Carlo
    •  & Mattia Scandolo
  • News & Views |

    Biomolecular condensates compartmentalize and concentrate cellular components without the delimitation of a lipid membrane. The protein VASP is now shown to condense, resulting in the reorganization of actin, a key component of the cell cytoskeleton.

    • Julie Plastino
  • Research Briefing |

    A DNA-based nanorobotic arm connected to a base plate through a flexible joint can be used to store and release mechanical energy. The joint acts as a torsion spring that is wound up by rotating the arm using external electric fields and is released using a high-frequency electrical pulse.

  • News & Views |

    Epithelial tissues cover our organs and play an important role as physical barriers. The conditions leading to spontaneous hole formation in monolayer epithelia, which challenge epithelial integrity, have now been revealed.

    • Tatiana Merle
    •  & Magali Suzanne
  • News & Views |

    Elasticity-driven synchronization in active solids has been predicted theoretically and was recently realized in a synthetic system. A biological realization is now demonstrated in a bacterial biofilm.

    • Japinder Nijjer
    • , Tal Cohen
    •  & Jing Yan
  • Letter |

    A continuum active solid system is realized in a bacterial biofilm. Self-sustained elastic waves are observed, and two modes of collective motion with a sharp transition between them are identified.

    • Haoran Xu
    • , Yulu Huang
    •  & Yilin Wu
  • Research Briefing |

    Organs in the human body have complex networks of fluid-filled tubes and loops with different geometries and topologies. By studying self-organized, synthetic tissues, the link between topological transitions and the emergence of tissue architecture was revealed.

  • Letter
    | Open Access

    During development, tissues with complex topology emerge from collections of cells with simple geometry. This process in neuroepithelial organoids is governed by two topologically distinct modes of epithelial fusion.

    • Keisuke Ishihara
    • , Arghyadip Mukherjee
    •  & Frank Jülicher
  • News & Views |

    Watching a single protein molecule fold for days reveals rare excursions into configurations that were previously hidden from observation by high energy barriers.

    • Krishna Neupane
    •  & Michael T. Woodside
  • News & Views |

    Embryonic development is characterized by large cellular flows. The cells retain their positional information despite these flows thanks to an unjamming of cells that pull along jammed cells in a way that preserves initial tissue patterning.

    • Sham Tlili