Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Proteins on the move: insights gained from fluorescent protein technologies

Key Points

  • In the past 10 years, there has been great progress in the development of fluorescent proteins (FPs) to study protein movement and protein interactions. Green FP (GFP)-like proteins have been mutated to be monomers as useful tags for analysing protein movement.

  • FPs have been used to study bulk protein movement, primarily through photobleaching or photoactivation techniques, which allow the determination of protein diffusion and protein binding kinetics.

  • FPs have also been used to track single proteins within the cell. The technique may vary depending on properties of the protein; for example, whether it is soluble.

  • By studying movement, insights have been obtained on protein–protein interactions. Fluorescence cross-correlation spectroscopy (FCCS) has been used to detect the synchronous movement of two proteins fused to different FPs. Bimolecular fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) have both been used to study protein proximity, an indicator of protein interactions.

Abstract

Proteins are always on the move, and this may occur through diffusion or active transport. The realization that the regulation of signal transduction is highly dynamic in space and time has stimulated intense interest in the movement of proteins. Over the past decade, numerous new technologies using fluorescent proteins have been developed, allowing us to observe the spatiotemporal dynamics of proteins in living cells. These technologies have greatly advanced our understanding of protein dynamics, including protein movement and protein interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oligomerization and aggregation of GFP-like proteins.
Figure 2: Relaxation processes after photobleaching and photoactivation.
Figure 3: SptPALM and its dual-colourization.
Figure 4: Time-domain, two-photon FLIM for monitoring the activation of small GTPases.

Similar content being viewed by others

References

  1. Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    CAS  PubMed  Google Scholar 

  2. Miyawaki, A. Innovations in the imaging of brain functions using fluorescent proteins. Neuron 48, 189–199 (2005).

    CAS  PubMed  Google Scholar 

  3. Shaner, N. C., Steinbach, P. A. & Tsien, R. Y. A guide to choosing fluorescent proteins. Nature Methods 2, 905–909 (2005).

    CAS  PubMed  Google Scholar 

  4. Lin, M. Z., Miyawaki, A. & Tsien, R. Y. Fluorescent proteins illuminate cell biology (Poster). Nature Rev. Mol. Cell Biol. 10 (2010).

  5. Shaner, N. C., Patterson, G. H. & Davidson, M. W. Advances in fluorescent protein technology. J. Cell Sci. 120, 4247–4260 (2007).

    CAS  PubMed  Google Scholar 

  6. Day, R. N. & Davidson, M. W. The fluorescent protein palette: tools for cellular imaging. Chem. Soc. Rev. 38, 2887–2921 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chudakov, D. M., Matz, M. V., Lukyanov, S. & Lukyanov, K. A. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90, 1103–1163 (2010).

    CAS  PubMed  Google Scholar 

  8. Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nature Rev. Mol. Cell Biol. 2, 444–456 (2001).

    CAS  Google Scholar 

  9. Yokoe, H. & Meyer, T. Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nature Biotech. 14, 1252–1256 (1996).

    CAS  Google Scholar 

  10. Brejc, K. et al. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc. Natl Acad. Sci. USA 94, 2306–2311 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Matz, M. V. et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotech. 17, 969–973 (1999).

    CAS  Google Scholar 

  12. Patterson, G. H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877 (2002).

    CAS  PubMed  Google Scholar 

  13. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl Acad. Sci. USA 99, 12651–12656 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Phair, R. D. & Misteli, T. Kinetic modelling approaches to in vivo imaging. Nature Rev. Mol. Cell Biol. 2, 898–907 (2001).

    CAS  Google Scholar 

  15. Brandizzi, F., Fricker, M. & Hawes, C. A greener world: the revolution in plant bioimaging. Nature Rev. Mol. Cell Biol. 3, 520–530 (2002).

    CAS  Google Scholar 

  16. Zhang, J., Campbell, R. E., Ting, A. Y. & Tsien, R. Y. Creating new fluorescent probes for cell biology. Nature Rev. Mol. Cell Biol. 3, 906–918 (2002).

    CAS  Google Scholar 

  17. Lukyanov, K. A., Chudakov, D. M., Lukyanov, S. & Verkhusha, V. V. Photoactivatable fluorescent proteins. Nature Rev. Mol. Cell Biol. 6, 885–891 (2005).

    CAS  Google Scholar 

  18. Kerppola, T. K. Visualization of molecular interactions by fluorescence complementation. Nature Rev. Mol. Cell Biol. 7, 449–456 (2006).

    CAS  Google Scholar 

  19. Pepperkok, R. & Ellenberg, J. High-throughput fluorescence microscopy for systems biology. Nature Rev. Mol. Cell Biol. 7, 690–696 (2006).

    CAS  Google Scholar 

  20. Fernández-Suárez, M. & Ting, A. Y. Fluorescent probes for super-resolution imaging in living cells. Nature Rev. Mol. Cell Biol. 9, 929–943 (2008).

    Google Scholar 

  21. Shav-Tal, Y., Singer, R. H. & Darzacq, X. Imaging gene expression in single living cells. Nature Rev. Mol. Cell Biol. 5, 855–861 (2004).

    CAS  Google Scholar 

  22. Dehmelt, L. & Bastiaens, P. I. Spatial organization of intracellular communication: insights from imaging. Nature Rev. Mol. Cell Biol. 11, 440–452 (2010).

    CAS  Google Scholar 

  23. Yang, M., Jiang, P. & Hoffman, R. M. Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time. Cancer Res. 67, 5195–5200 (2007).

    CAS  PubMed  Google Scholar 

  24. Nowotschin, S., Eakin, G. S. & Hadjantonakis, A. K. Live-imaging fluorescent proteins in mouse embryos: multi-dimensional, multi-spectral perspectives. Trends Biotechnol. 27, 266–276 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chudakov, D. M., Lukyanov, S. & Lukyanov, K. A. Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol. 23, 605–613 (2005).

    CAS  PubMed  Google Scholar 

  26. Labas, Y. A. et al. Diversity and evolution of the green fluorescent protein family. Proc. Natl Acad. Sci. USA 99, 4256–4261 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Matz, M. V., Lukyanov, K. A. & Lukyanov, S. A. Family of the green fluorescent protein: journey to the end of the rainbow. Bioessays 24, 953–959 (2002).

    CAS  PubMed  Google Scholar 

  28. Shagin, D. A. et al. GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. Mol. Biol. Evol. 21, 841–850 (2004).

    CAS  PubMed  Google Scholar 

  29. Zacharias, D. A., Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    CAS  PubMed  Google Scholar 

  30. Campbell, R. E. et al. A monomeric red fluorescent protein. Proc. Natl Acad. Sci. USA 99, 7877–7882 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wall, M. A., Socolich, M. & Ranganathan, R. The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nature Struct. Biol. 7, 1133–1138 (2000).

    CAS  PubMed  Google Scholar 

  32. Yarbrough, D., Wachter, R. M., Kallio, K., Matz, M. V. & Remington, S. J. Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-Å resolution. Proc. Natl Acad. Sci. USA 98, 462–467 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotech. 22, 1567–1572 (2004).

    CAS  Google Scholar 

  34. Wiedenmann, J. et al. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion Proc. Natl Acad. Sci. USA 101, 15905–15910 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yanushevich, Y. G. et al. A strategy for the generation of non-aggregating mutants of Anthozoa fluorescent proteins. FEBS Lett. 511, 11–14 (2002).

    CAS  PubMed  Google Scholar 

  36. Katayama, H., Yamamoto, A., Yoshimori, T., Mizushima, N. & Miyawaki, A. GFP-like proteins stably accumulate in lysosomes. Cell Struct. Funct. 33, 1–12 (2008).

    CAS  PubMed  Google Scholar 

  37. Tsutsui, H., Karasawa, S., Shimizu, H., Nukina, N. & Miyawaki, A. Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep. 6, 233–238 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shimozono, S., Tsutsui, H. & Miyawaki, A. Diffusion of large molecules into assembling nuclei revealed using an optical highlighting techniques. Biophys. J. 97, 1288–1294 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lauf, U., Lopez, P. & Falk, M. M. Expression of fluorescently tagged connexins, a novel approach to rescue function of oligomeric DsRed-tagged proteins. FEBS Lett. 498, 11–15 (2001).

    CAS  PubMed  Google Scholar 

  40. Bulina, M. E., Verkhusha, V. V., Staroverov, D. B., Chudakov, D. M. & Lukyanov, K. A. Hetero-oligomeric tagging diminishes non-specific aggregation of target proteins fused with Anthozoa fluorescent proteins. Biochem. J. 371, 109–114 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. & Webb, W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jacobson, K. A. et al. Cellular determinants of the lateral mobility of neural cell adhesion molecules. Biochim. Biophys. Acta 1330, 138–144 (1997).

    CAS  PubMed  Google Scholar 

  43. Ellenberg, J. et al. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J. Cell Biol. 138, 1193–1206 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sprague, B. L. & McNally, J. G. FRAP analysis of binding: proper and fitting. Trends Cell Biol. 15, 84–91 (2005).

    CAS  PubMed  Google Scholar 

  45. Rabut, G. & Ellenberg, J. in Live Cell Imaging (eds Goldman, R. D. & Spector, D. L.) 101–127 (Cold Spring Harbor Laboratory Press, New York, 2005).

    Google Scholar 

  46. Cole, N. B. et al. Diffusional mobility of Golgi proteins in membranes of living cells. Science 273, 797–801 (1996).

    CAS  PubMed  Google Scholar 

  47. Kohler, R. H., Cao, J., Zipfel, W. R., Webb, W. W. & Hanson, M. R. Exchange of protein molecules through connections between higher plant plastids. Science 276, 2039–2042 (1997).

    CAS  PubMed  Google Scholar 

  48. Zaal, K. J. et al. Golgi membranes are absorbed into and remerge from the ER during mitosis. Cell 99, 589–601 (1999).

    CAS  PubMed  Google Scholar 

  49. Kruhlak, M. J. et al. Reduced mobility of the alternate splicing factor (ASF) through the nucleoplasm and steady state speckle compartments. J. Cell Biol. 150, 41–51 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Swaminathan, R., Hoang, C. P. & Verkman, A. S. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys. J. 72, 1900–1907 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Partikian, A., Olveczky, B., Swaminathan, R., Li, Y. & Verkman, A. S. Rapid diffusion of green fluorescent protein in the mitochondrial matrix. J. Cell Biol. 140, 821–829 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Dayel, M. J., Hom, E. F. Y. & Verkman, A. S. Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum. Biophys. J. 76, 2843–2851 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lippincott-Schwartz, J. & Patterson, G. H. Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol. 19, 555–565 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sample, V., Newman, R. H. & Zhang, J. The structure and function of fluorescent proteins. Chem. Soc. Rev. 38, 2582–2864 (2009).

    Google Scholar 

  55. Verkhusha, V. V. & Sorkin, A. Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem. Biol. 12, 279–285 (2005).

    CAS  PubMed  Google Scholar 

  56. Subach, F. V. et al. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nature Methods 6, 153–159 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Subach, F. V., Patterson, G. H., Renz, M., Lippincott-Schwartz, J. & Verkhusha, V. V. Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J. Am. Chem. Soc. 132, 6481–6491 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Matsuda, T., Miyawaki, A. & Nagai, T. Direct measurement of protein dynamics inside cells using a rationally designed photoconvertible protein. Nature Methods 5, 339–345 (2008).

    CAS  PubMed  Google Scholar 

  59. McKinney, S. A., Murphy, C. S., Hazelwood, K. L., Davidson, M. W. & Looger, L. L. A bright and photostable photoconvertible fluorescent protein. Nature Methods 6, 131–133 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Habuchi, S., Tsutsui, H., Kochaniak, A. B., Miyawaki, A. & van Oijen, A. M. mKikGR, a monomeric photoswitchable fluorescent protein. PloS ONE 3, e3944 (2008).

    PubMed  PubMed Central  Google Scholar 

  61. Gurskaya, N. G. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nature Biotech. 24, 461–465 (2006).

    CAS  Google Scholar 

  62. Fuchs, J. et al. A photoactivatable marker protein for pulse-chase imaging with superresolution. Nature Methods 7, 627–630 (2010).

    CAS  PubMed  Google Scholar 

  63. Chudakov, D. M. et al. Photoswitchable cyan fluorescent protein for protein tracking. Nature Biotech. 22, 1435–1439 (2004).

    CAS  Google Scholar 

  64. Subach, O. M. et al. A photoswitchable orange-to-far-red fluorescent protein, PSmOrange. Nature Methods 8, 771–777 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bergeland, T., Haugen, L., Landsverk, O. J., Stenmark, H. & Bakke, O. Cell-cycle-dependent binding kinetics for the early endosomal tethering factor EEA1. EMBO Rep. 9, 171–178 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Plachta, N., Bollenbach, T., Pease, S., Fraser, S. E. & Pantazis, P. Oct4 kinetics predict cell lineage patterning in the early mammalian embryo. Nature Cell Biol. 13, 117–123 (2011).

    CAS  PubMed  Google Scholar 

  67. Svoboda, K., Tank, D. W. & Denk, W. Direct measurement of coupling between dendritic spines and shafts. Science 272, 716–719 (1996).

    CAS  PubMed  Google Scholar 

  68. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nature Methods 2, 932–940 (2005).

    CAS  PubMed  Google Scholar 

  69. Brown, E. B., Wu, E. S., Zipfel, W. & Webb, W. W. Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery. Biophys. J. 77, 2837–2849 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Star, E. N., Kwiatkowski, D. J. & Murthy, V. N. Rapid turnover of actin in dendritic spines and its regulation by activity. Nature Neurosci. 5, 239–246 (2002).

    CAS  PubMed  Google Scholar 

  71. Honkura, N., Matsuzaki, M., Noguchi, J., Ellis-Davies, G. C. & Kasai, H. The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57, 719–729 (2008).

    CAS  PubMed  Google Scholar 

  72. Gray, N. W., Weimer, R. M., Bureau, I. & Svoboda, K. Rapid redistribution of synaptic PSD-95 in the neocortex in vivo. PLoS Biol. 4, e370 (2006).

    PubMed  PubMed Central  Google Scholar 

  73. Sturgill, J. F., Steiner, P., Czervionke, B. L. & Sabatini, B. L. Distinct domains within PSD-95 mediate synaptic incorporation, stabilization, and activity-dependent trafficking. J. Neurosci. 29, 12845–12854 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lukyanov, K. A. et al. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J. Biol. Chem. 275, 25879–25882 (2000).

    CAS  PubMed  Google Scholar 

  75. Chudakov, D. M. et al. Kindling fluorescent proteins for precise in vivo photolabeling. Nature Biotech. 21, 191–194 (2003).

    CAS  Google Scholar 

  76. Ando, R., Mizuno, H. & Miyawaki, A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306, 1370–1373 (2004).

    CAS  PubMed  Google Scholar 

  77. Ando, R., Flors, C., Mizuno, H., Hofkens, J. & Miyawaki, A. Highlighted generation of fluorescence signals using simultaneous two-color irradiation on Dronpa mutants. Biophys. J. 92, L97–L99 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Brakemann, T. et al. Molecular basis of the light-driven switching of the photochromic fluorescent protein Padron. J. Biol. Chem. 285, 14603–14609 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Henderson, J. N., Ai, H. W., Campbell, R. E. & Remington, S. J. Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc. Natl Acad. Sci. USA 104, 6672–6677 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Adam, V. et al. Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations. Proc. Natl Acad. Sci. USA 105, 18343–18348 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Stiel, A. C. et al. Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. Biophys. J. 95, 2989–2997 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Subach, F. V. et al. Red fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET. Chem. Biol. 17, 745–755 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sawano, A., Takayama, S., Matsuda, M. & Miyawaki, A. Lateral propagation of EGF signaling after local stimulation is dependent on receptor density. Dev. Cell 3, 245–257 (2002).

    CAS  PubMed  Google Scholar 

  84. Miyawaki, A. Visualization of the spatial and temporal dynamics of intracellular signaling. Dev. Cell 4, 295–305 (2003).

    CAS  PubMed  Google Scholar 

  85. Sheetz, M. P., Turney, S., Qian, H. & Elson, E. L. Nanometre-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movements. Nature 340, 284–288 (1989).

    CAS  PubMed  Google Scholar 

  86. Schmidt, T., Schütz, G. J., Baumgartner, W., Gruber, H. J. & Schindler, H. Imaging of single molecule diffusion. Proc. Natl Acad. Sci. USA 93, 2926–2929 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kusumi, A., Shirai, Y. M., Koyama-Honda, I., Suzuki, K. G. & Fujiwara, T. K. Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy. FEBS Lett. 584, 1814–1823 (2010).

    CAS  PubMed  Google Scholar 

  88. Tokunaga, M., Kitamura, K., Saito, K., Iwane, A. H. & Yanagida, T. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem. Biophys. Res. Commun. 235, 47–53 (1997).

    CAS  PubMed  Google Scholar 

  89. Mashanov, G. I., Tacon, D., Knight, A. E., Peckham, M. & Molloy, J. E. Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy. Methods 29, 142–152 (2003).

    CAS  PubMed  Google Scholar 

  90. Schneckenburger, H. Total internal reflection fluorescence microscopy: technical innovations and novel applications. Curr. Opin. Biotechnol. 16, 13–18 (2005).

    CAS  PubMed  Google Scholar 

  91. Axelrod, D. Total internal reflection fluorescence microscopy. Methods Cell Biol. 89, 169–221 (2008).

    CAS  PubMed  Google Scholar 

  92. Toomre, D. & Bewersdorf, J. A new wave of cellular imaging. Annu. Rev. Cell Dev. Biol. 26, 285–314 (2010).

    CAS  PubMed  Google Scholar 

  93. Toomre, D., Steyer, J. A., Keller, P., Almers, W. & Simons, K. Fusion of constitutive membrane traffic with the cell surface observed by evanescent wave microscopy. J. Cell Biol. 149, 33–40 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Merrifield, C. J., Feldman, M. E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nature Cell Biol. 4, 691–698 (2002).

    CAS  PubMed  Google Scholar 

  95. Tokunaga, M., Imamoto, N. & Sakata-Spgawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nature Methods 5, 159–161 (2008).

    CAS  PubMed  Google Scholar 

  96. Shaner, N. C. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nature Methods 5, 545–551 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Merzlyak, E. M. et al. Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nature Methods 4, 555–557 (2007).

    CAS  PubMed  Google Scholar 

  98. Chen, H., Farkas, E. R. & Watt, W. W. In vivo applications of fluorescence correlation spectroscopy. Methods Cell Biol. 89, 3–35 (2008).

    CAS  PubMed  Google Scholar 

  99. Kohl, T. & Schwille, P. Fluorescence correlation spectroscopy with autofluorescent proteins. Adv. Biochem. Eng. Biotechnol. 95, 107–142 (2005).

    CAS  PubMed  Google Scholar 

  100. Kim, S. A., Heinze, K. G. & Schwille, P. Fluorescence correlation spectroscopy in living cells. Nature Methods 4, 963–973 (2007).

    CAS  PubMed  Google Scholar 

  101. Haustein, E. & Schwille, P. Fluorescence correlation spectroscopy: novel variations of an established technique. Annu. Rev. Biophys. Biomol. Struct. 36, 151–169 (2007).

    CAS  PubMed  Google Scholar 

  102. Adams, M. C. et al. Signal analysis of total internal reflection fluorescent speckle microscopy (TIR-FSM) and wide-field epi-fluorescence FSM of the actin cytoskeleton and focal adhesions in living cells. J. Microsc. 216, 138–152 (2004).

    CAS  PubMed  Google Scholar 

  103. Danuser, G. & Waterman-Storer, C. M. Quantitative fluorescent speckle microscopy of cytoskeleton dynamics. Annu. Rev. Biophys. Biomol. Struct. 35, 361–387 (2006).

    CAS  PubMed  Google Scholar 

  104. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    CAS  PubMed  Google Scholar 

  105. Hess, S. T., Girirajan, T. P. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3, 793–795 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nature Methods 5, 155–157 (2008).

    CAS  PubMed  Google Scholar 

  108. Cardarelli, F. & Gratton, E. In vivo imaging of single-molecule translocation through nuclear pore complexes by pair correlation functions. PLoS ONE 5, e10475 (2010).

    PubMed  PubMed Central  Google Scholar 

  109. Petersen, N. O., Höddelius, P. L., Wiseman, P. W., Seger, O. & Magnusson, K. E. Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophys. J. 65, 1135–1146 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Brown, C. M. et al. Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope. J. Microsc. 229, 78–91 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Capoulade, J., Wachsmuth, M., Hufnagel, L. & Knop, M. Quantitative fluorescence imaging of protein diffusion and interaction in living cells. Nature Biotech. 7 Aug 2011 (doi:10.1038/nbt.1928).

    CAS  PubMed  Google Scholar 

  112. Kohl, T., Haustein, E. & Schwille, P. Determining protease activity in vivo by fluorescence cross-correlation analysis. Biophys. J. 89, 2770–2782 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kogure, T. et al. A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nature Biotech. 24, 577–581 (2006).

    CAS  Google Scholar 

  114. Piatkevich, K. D. et al. Monomeric red fluorescent proteins with a large Stokes shift. Proc. Natl Acd. Sci. USA 107, 5369–5374 (2010).

    CAS  Google Scholar 

  115. Miyawaki, A. & Tsien, R. Y. Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol. 327, 472–500 (2000).

    CAS  PubMed  Google Scholar 

  116. Jares-Erijman, E. A. & Jovin, T. M. FRET imaging. Nature Biotech. 21, 1387–1395 (2003).

    CAS  Google Scholar 

  117. Jares-Erijman, E. A. & Jovin, T. M. Imaging molecular interactions in living cells by FRET microscopy. Curr. Opin. Chem. Biol. 10, 409–416 (2006).

    CAS  PubMed  Google Scholar 

  118. Piston, D. W. & Kremers, G. J. Fluorescent protein FRET: the good, the bad and ugly. Trends Biochem. Sci. 32, 407–414 (2007).

    CAS  PubMed  Google Scholar 

  119. Frommer, W. B., Davidson, M. W. & Campbell, R. E. Genetically encoded biosensors based on engineered fluorescent proteins. Chem. Soc. Rev. 38, 2833–2841 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Miyawaki, A. Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer. Annu. Rev. Biochem. 80, 357–373 (2011).

    CAS  PubMed  Google Scholar 

  121. Gordon, G. W., Berry, G., Liang, X. H., Levine, B. & Herman, B. Quantitative fluorescence energy transfer measurements using fluorescence microscopy. Biophys. J. 74, 2702–2713 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Erickson, M. G., Liang, H., Mori, M. X. & Yue, D. T. FRET two-hybrid mapping reveals function and location of L-type Ca2+ channel CaM preassociation. Neuron 39, 97–107 (2003).

    CAS  PubMed  Google Scholar 

  123. Berney, C. & Danuser, G. FRET or no FRET: a quantitative comparison. Biophys. J. 84, 3992–4010 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Yasuda, R. et al. Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging. Nature Neurosci. 9, 283–291 (2006).

    CAS  PubMed  Google Scholar 

  125. Murakoshi, H., Wang, H. & Yasuda, R. Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472, 100–104 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Yasuda, R. & Murakoshi, H. The mechanisms underlying the spatial spreading of signaling activity. Curr. Opin. Neurobiol. 21, 313–321 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kerppola, T. K. Visualization of molecular interactions using bimolecular fluorescence complementation analysis: characteristics of protein fragment complementation. Chem. Soc. Rev. 38, 2876–2886 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Shroff, H. et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Natl Acad. Sci. USA 104, 20308–20313 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Grecco, H. E., Schmick, M. & Bastiaens, P. I. Signaling from the living plasma membrane. Cell 144, 897–909 (2011).

    CAS  PubMed  Google Scholar 

  130. Sasaki, E. et al. Generation of transgenic non-human primates with germline transmission. Nature 459, 523–527 (2009).

    CAS  PubMed  Google Scholar 

  131. Perentes, J. Y. et al. In vivo imaging of extracellular matrix remodeling by tumor-associated fibroblasts. Nature Methods. 6, 143–145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Harvey, S. A. & Smith, J. C. Visualisation and quantification of morphogen gradient formation in the zebrafish. PLoS Biol. 7, e1000101 (2009).

    PubMed  PubMed Central  Google Scholar 

  133. Ries, J., Yu, S. R., Burkhardt, M., Brand, M. & Schwille, P. Modular scanning FCS quantifies receptor–ligand interactions in living multicellular organisms. Nature Methods 6, 643–645 (2009).

    CAS  PubMed  Google Scholar 

  134. Burnette, D. T. et al. A role for actin arcs in the leading-edge advance of migrating cells. Nature Cell Biol. 13, 371–381 (2011).

    CAS  PubMed  Google Scholar 

  135. van Thor, J. J., Gensch, T., Hellingwerf, K. J. & Johnson, L. N. Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222. Nature Struct. Biol. 9, 37–41 (2002).

    CAS  PubMed  Google Scholar 

  136. Mizuno, H. et al. Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol. Cell 12, 1051–1058 (2003).

    CAS  PubMed  Google Scholar 

  137. Periasamy, N. & Verkman, A. S. Analysis of fluorophore diffusion by continuous distributions of diffusion coefficients: application to photobleaching measurements of multicomponent and anomalous diffusion. Biophys. J. 75, 557–567 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Malchus, N. & Weiss, M. Anomalous diffusion reports on the interaction of misfolded proteins with the quality control machinery in the endoplasmic reticulum. Biophys. J. 99, 1321–1328 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Bancaud, A. et al. Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J. 28, 3785–3798 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Marks, K. M. & Nolan, G. P. Chemical labeling strategies for cell biology. Nature Methods 3, 591–596 (2006).

    CAS  PubMed  Google Scholar 

  141. Manley, S. Gillete, J. & Lippincott-Scwartz, J. Single-particle tracking photoactivated localization microscopy for mapping single-molecule dynamics. Methods Enzymol. 475, 109–120 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank S. Shimozono and R. Ando for the images in figures 2d and 2h; H. Sakurai, V. Lakshmanam and T. Fukano for general assistance; and S. Trowbridge, D. Mou, V. Verkhusha and S. Manley for valuable comments.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary information S1 (figure) | Development of photoactivatable and photoconvertible FPs. (PDF 249 kb)

41580_2011_BFnrm3199_MOESM6_ESM.pdf

Supplementary information S2 (figure) | Molecular mechanisms for the irreversible photoactivation of PA-GFP and photoconversion of Kaede. (PDF 317 kb)

Glossary

Site-directed mutagenesis

An in vitro mutagenesis procedure that is often carried out using a polymerase chain reaction in which specific mutations are introduced into a DNA molecule.

Hydrodynamic radius

The effective size of the molecule as detected by its diffusion.

Fractal model

A model in which diffusing molecules and complexes encounter the same obstructions regardless of their size.

Dendritic spines

Small membranous protrusions from dendritic shafts that usually receive excitatory input.

Pyramidal neurons

The predominant type of neuron in the neocortex. They are named after their triangular cell bodies.

Barrel cortex

The dark-staining regions of layer 4 of the somatosensory cortex, where somatosensory inputs from the contralateral side of the body come in from the thalamus.

Axial dimension

The dimension along the optical axis of an objective lens.

Highly inclined and laminated optical sheet

The illumination light for single-molecule imaging inside cells. The light is generated by positioning the incident beam to propagate near the objective edge.

Multiplexing

A method that allows the simultaneous imaging of multiple events in a single cell.

Diffraction limit

Although an ideal optical system would image an object point perfectly as a point, diffraction occurs owing to the wave-like nature of radiation, and the result is that the image of a point is a blur. Thus, the ability of an imaging system to resolve detail is ultimately limited by diffraction.

Stochastic optical reconstruction microscopy

A high-resolution fluorescence microscopy method based on high-accuracy localization of photoswitchable fluorophores.

Pair correlation function

A function that shows the probability of finding the centre of a particle that is located a given distance from the centre of another particle.

Euchromatin

A form of chromatin that is lightly packed and often transcriptionally active during interphase.

Heterochromatin

A condensed form of chromatin in which the degree of compaction is similar to that of mitotic chromosomes. It is usually found around the centromere.

Stokes shifts

The energy difference between the emitted photon and the absorbed photon. The Stokes shift is usually expressed as the difference between positions of the band maxima of the absorption and emission spectra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyawaki, A. Proteins on the move: insights gained from fluorescent protein technologies. Nat Rev Mol Cell Biol 12, 656–668 (2011). https://doi.org/10.1038/nrm3199

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing