Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Novel therapeutic targets for the treatment of heart failure

Key Points

  • Heart failure is a heterogeneous, multifactorial and progressive syndrome that presents as a wide spectrum of phenotypes and is often accompanied by other comorbidities. It represents a major health problem owing to its high morbidity and mortality and substantial health-care costs.

  • The goals of treatment are to reduce mortality and morbidity, prevent heart disease or its progression, and manage comorbidities that cause and/or contribute to the pathogenesis of heart failure.

  • Despite considerable therapeutic advances, treatment of acute decompensated heart failure has not changed much over the past 25 years, as new drugs have failed to reduce morbidity and mortality rates compared to placebo. Furthermore, no treatment strategy has improved clinical outcomes in patients with heart failure with preserved left ventricular ejection fraction.

  • There is an unmet need for the development of new drugs with a favourable safety profile that can improve cardiac performance and clinical outcomes in patients, and prevent the progression of heart failure.

  • In recent years, new potential therapeutic targets that are involved in the pathogenesis of heart failure have been identified and several promising new drugs are currently under investigation, both in experimental models and in clinical trials in patients with heart failure.

  • However, the positive results that are obtained in preclinical and Phase II studies are not always confirmed in large Phase III trials. In this Review, we provide a detailed analysis of the possible explanations for this discrepancy.

  • The development of new effective and safe drugs for the treatment of heart failure should be based on a better understanding of the pathophysiological mechanisms that are directly implicated in the onset and/or maintenance of heart failure, robust preclinical data and well-designed clinical trials.

Abstract

Despite considerable therapeutic advances, heart failure remains a medical and socioeconomic problem. Thus, there is a compelling need for new drugs that could improve clinical outcomes. In recent years, new potential therapeutic targets that are involved in the pathogenesis of heart failure have been identified, and new drugs are currently under investigation. A repeated finding is that the positive results that have been observed in preclinical studies and Phase II trials are not always confirmed in Phase III studies. This Review analyses the new therapeutic targets (for example, ventricular remodelling, renin–angiotensin–aldosterone system activation, defects in Ca2+ cycling, and so on), the mechanism of action, efficacy and future perspectives of new drugs that are currently under development for the treatment of heart failure, and the possible explanations for the discrepancy between Phase II and Phase III trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sites of action of drugs producing diuresis and natriuresis.
Figure 2: Schematic representation of the mechanisms of action of several vasodilators.
Figure 3: Sites of action of positive inotropic agents.
Figure 4: Scheme of the cardiac Ca2+-cycling defects in heart failure.

Similar content being viewed by others

References

  1. Dickstein, K. et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur. J. Heart Fail. 10, 933–989 (2008). These are the guidelines for the diagnosis and treatment of acute and chronic heart failure.

    PubMed  Google Scholar 

  2. Hunt, S. A. et al. 2009 Focused update incorporated into the ACC/AHA 2005 Guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. J. Am. Coll. Cardiol. 53, e1–e90 (2009).

    PubMed  Google Scholar 

  3. Lloyd-Jones, D. et al. Heart disease and stroke statistics — 2010 update: a report from the American Heart Association. Circulation 121, e46–e215 (2010).

    PubMed  Google Scholar 

  4. Fang, J., Mensah, G. A., Croft, J. B. & Keenan, N. L. Heart failure-related hospitalization in the US, 1979 to 2004. J. Am. Coll. Cardiol. 52, 428–434 (2008).

    PubMed  Google Scholar 

  5. Gheorghiade, M. Acute heart failure syndromes. J. Am. Coll. Cardiol. 53, 557–573 (2009).

    PubMed  Google Scholar 

  6. López-Sendón, J. et al. Expert consensus document on angiotensin converting enzyme inhibitors in cardiovascular disease. The Task Force on ACE-inhibitors of the European Society of Cardiology. Eur. Heart J. 25, 1454–1470 (2004).

    PubMed  Google Scholar 

  7. López-Sendón, J. et al. Expert consensus document on β-adrenergic receptor blockers. Task Force on beta-blockers of the European Society of Cardiology. Eur. Heart J. 25, 1341–1362 (2004).

    PubMed  Google Scholar 

  8. Felker, G. M. et al. Clinical trials of pharmacological therapies in acute heart failure syndromes: lessons learned and directions forward. Circ. Heart Fail. 3, 314–325 (2010). This study analyses why we have failed to develop new, safe and effective drugs for the treatment of acute heart failure syndromes (AHFSs), and identifies current barriers and potential solutions for moving the field forward.

    PubMed  Google Scholar 

  9. Tamargo, J., Amorós, I., Barana, A., Caballero, R. & Delpón, E. New investigational drugs for the management of acute heart failure syndromes. Curr. Med. Chem. 17, 363–390 (2010).

    CAS  PubMed  Google Scholar 

  10. Sata, Y. & Krum, H. The future of pharmacological therapy for heart failure. Circ. J. 74, 809–817 (2010).

    CAS  PubMed  Google Scholar 

  11. Gheorghiade, M. et al. Clinical development of pharmacologic agents for acute heart failure syndromes: a proposal for a mechanistic translational phase. Am. Heart. J. 161, 224–232 (2011). This article recognizes that the lack of in-depth understanding of novel molecules before pivotal trials are performed is one of the reasons why the clinical benefits that are observed in Phase II trials are not reproduced in Phase III ADHF trials. This study also outlines the translational phase of research for the clinical development of therapies for AHFS as an important first step towards greater success in AHFS clinical trials.

    CAS  PubMed  Google Scholar 

  12. Allen, L. A., Hernandez, A. F., O'Connor, C. M. & Felker, G. M. End points for clinical trials in acute heart failure syndromes. J. Am. Coll. Cardiol. 53, 2248–2258 (2009). This review summarizes the variety of end points used in completed and ongoing AHFS studies, and suggests steps for greater standardization of end points across AHFS trials.

    PubMed  PubMed Central  Google Scholar 

  13. Ouzounian, M., Lee, D. S. & Liu, P. P. Diastolic heart failure: mechanisms and controversies. Nature Clin. Pract. Cardiovasc. Med. 5, 375–386 (2008).

    Google Scholar 

  14. Borlaug, B. A. & Paulus, W. J. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur. Heart J. 32, 670–679 (2011). This review analyses the recent advances in our understanding of the diastolic and non-diastolic mechanisms underlying HFPEF and discusses some novel therapeutic strategies that are currently under investigation.

    PubMed  Google Scholar 

  15. Mebazaa, A. et al. Levosimendan vs dobutamine for patients with acute decompensated heart failure: the SURVIVE randomized trial. JAMA 297, 1883–1891 (2007).

    CAS  PubMed  Google Scholar 

  16. Konstam, M. A. et al. Effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure (HEAAL study): a randomised, double-blind trial. Lancet 374, 1840–1848 (2009).

    CAS  PubMed  Google Scholar 

  17. Swedberg, K. et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 376, 875–885 (2010). This was the first demonstration of clinical efficacy in a large morbi–mortality trial with ivabradine, which is a novel selective bradycardic drug that does not have direct haemodynamic effects.

    CAS  PubMed  Google Scholar 

  18. Felker, G. M. & Maisel, A. S. A global rank end point for clinical trials in acute heart failure. Circ. Heart Fail. 3, 643–646 (2010).

    PubMed  Google Scholar 

  19. Felker, G. M., O'Connor, C. M. & Braunwald, E. Heart failure clinical research network investigators. Loop diuretics in acute decompensated heart failure: necessary? Evil? A necessary evil? Circ. Heart Fail. 2, 56–62 (2009).

    PubMed  PubMed Central  Google Scholar 

  20. Iyengar, S. & Abraham, W. T. Diuretics for the treatment of acute decompensated heart failure. Heart Fail. Rev. 12, 125–130 (2007).

    PubMed  Google Scholar 

  21. Felker, M. G. et al. Diuretic strategies in patients with acute decompensated heart failure. N. Engl. J. Med. 364, 797–805 (2011). In patients with ADHF, there are no substantial differences in the global assessment of symptoms or short-term impact on renal function when furosemide is administered at a high or low dose or via intermittent bolus or continuous infusions.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Herout, P. M. et al. Impact of worsening renal function during hospital admission on resource utilization in patients with heart failure. Am. J. Cardiol. 106, 1139–1145 (2010).

    PubMed  Google Scholar 

  23. Bock, J. S. & Gottlieb, S. S. Cardiorenal syndrome: new perspectives. Circulation 121, 2592–2560 (2010).

    PubMed  Google Scholar 

  24. Vallon, V., Miracle, C. & Thomson, S. Adenosine and kidney function: potential implications in patients with heart failure. Eur. J. Heart Fail. 10, 176–187 (2008).

    CAS  PubMed  Google Scholar 

  25. Shah, R. H. & Frishman, W. H. Adenosine 1 receptor antagonism: a new therapeutic approach for the treatment of decompensated heart failure. Cardiol. Rev. 17, 125–131 (2009).

    PubMed  Google Scholar 

  26. Cotter, G. et al. The PROTECT pilot study: a randomized, placebo controlled, dose-finding study of the adenosine A1 receptor antagonist rolofylline in patients with acute heart failure and renal impairment. J. Card. Fail. 14, 631–640 (2008).

    CAS  PubMed  Google Scholar 

  27. Massie, B. M. et al. Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N. Engl. J. Med. 363, 1419–1428 (2010).

    PubMed  Google Scholar 

  28. Cleland, J. G., Coletta, A. P. & Clark, A. L. Clinical trials update from the European Society of Cardiology Heart Failure Meeting 2010: TRIDENT 1, BENEFICIAL, CUPID, RFA-HF, MUSIC, DUEL, handheld BNP, phrenic nerve stimulation, CHAMPION and CABG with CRT study. Eur. J. Heart Fail. 12, 883–888 (2010).

    CAS  Google Scholar 

  29. Fonarow, G. C. et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. J. Am. Coll. Cardiol. 50, 768–777 (2007).

    PubMed  Google Scholar 

  30. Metra, M. et al. Vasodilators in the treatment of acute heart failure: what we know, what we don't. Heart Fail. Rev. 14, 299–307 (2009).

    CAS  PubMed  Google Scholar 

  31. Potter, L. R., Abbey-Hosch, S. & Dickey, D. M. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr. Rev. 27, 47–72 (2006).

    CAS  PubMed  Google Scholar 

  32. Mitrovic, V., Hernandez, A. F., Meyer, M. & Gheorghiade, M. Role of guanylate cyclase modulators in decompensated heart failure. Heart Fail. Rev. 14, 309–319 (2009).

    CAS  PubMed  Google Scholar 

  33. Sackner-Bernstein, J. D., Kowalski, M., Fox, M. & Aaronson, K. Short-term risk of death after treatment with nesiritide for decompensated heart failure: a pooled analysis of randomized controlled trials. JAMA 293, 1900–1905 (2005).

    CAS  PubMed  Google Scholar 

  34. Hernandez, A. F. et al. Acute study of clinical effectiveness of nesiritide in decompensated heart failure trial (ASCEND-HF). Circulation 122, Abstract 21828 22–27 (2010).

    Google Scholar 

  35. McKie, P. M., Sangaralingham, S. J. & Burnett, J. C. Jr. CD-NP: an innovative designer natriuretic peptide activator of particulate guanylyl cyclase receptors for cardiorenal disease. Curr. Heart Fail. Rep. 7, 93–99 (2010).

    CAS  PubMed  Google Scholar 

  36. Kilic, A. et al. A novel chimeric natriuretic peptide reduces cardiomyocyte hypertrophy through the NHE-1–calcineurin pathway. Cardiovasc. Res. 88, 434–442 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Packer, M. et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: the omapatrilat versus enalapril randomized trial of utility in reducing events (OVERTURE). Circulation 106, 920–926 (2002).

    CAS  PubMed  Google Scholar 

  38. Ruilope, L. M. et al. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet 375, 1255–1266 (2010).

    CAS  PubMed  Google Scholar 

  39. Venkatasubramaniam, S., Newby, D. E. & Lang, N. N. Urocortins in heart failure. Biochem. Pharmacol. 80, 289–296 (2010).

    Google Scholar 

  40. Davis, M. E. et al. Urocortin 2 infusion in human heart failure. Eur. Heart J. 28, 2589–2597 (2007).

    CAS  PubMed  Google Scholar 

  41. Tamargo, J., Duarte, J., Caballero, R. & Delpón, E. Cinaciguat, a soluble guanylate cyclase activator for the potential treatment of acute heart failure. Curr. Opin. Investig. Drugs 11, 1039–1047 (2010).

    CAS  PubMed  Google Scholar 

  42. Lapp, H. et al. Cinaciguat (BAY 58-2667) improves cardiopulmonary hemodynamics in patients with acute decompensated heart failure. Circulation 119, 2781–2788 (2009).

    CAS  PubMed  Google Scholar 

  43. Teichman, S. L., Unemori, E., Teerlink, J. R., Cotter, G. & Metra, M. Relaxin: review of biology and potential role in treating heart failure. Curr. Heart Fail. Rep. 7, 75–82 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Teerlink, J. R. et al. Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised, placebo-controlled, parallel-group, dose-finding Phase IIb study. Lancet 373, 1429–1439 (2009).

    CAS  PubMed  Google Scholar 

  45. Nishikimi, T. et al. Effects of long-term intravenous administration of adrenomedullin (AM) plus hANP therapy in acute decompensated heart failure: a pilot study. Circ. J. 73, 892–898 (2009).

    CAS  PubMed  Google Scholar 

  46. Zannad, F. et al. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 364, 11–21 (2011). This trial showed that eplerenone reduces the risk of death and the risk of hospitalization compared to placebo in patients with systolic heart failure and mild symptoms of heart failure. These results expanded the benefit of aldosterone antagonists to a much broader patient population, unless they were contraindicated (for example, in severe renal dysfunction or hyperkalaemia).

    CAS  PubMed  Google Scholar 

  47. Funder, J. W. Reconsidering the roles of the mineralocorticoid receptor. Hypertension 53, 286–290 (2009).

    CAS  PubMed  Google Scholar 

  48. Jensen, C., Herold, P. & Brunner, H. R. Aliskiren: the first renin inhibitor for clinical treatment. Nature Rev. Drug Discov. 7, 399–410 (2008).

    CAS  Google Scholar 

  49. Funke-Kaiser, H., Zollmann, F. S., Schefe, J. H. & Unger, T. Signal transduction of the (pro)renin receptor as a novel therapeutic target for preventing end-organ damage. Hypertens. Res. 33, 98–104 (2009).

    PubMed  Google Scholar 

  50. Latini, R. et al. The comparative prognostic value of plasma neurohormones at baseline in patients with heart failure enrolled in Val-HeFT. Eur. Heart. J. 25, 292–299 (2004).

    CAS  PubMed  Google Scholar 

  51. McMurray, J. J. et al. Effects of the oral direct renin inhibitor aliskiren in patients with symptomatic heart failure. Circ. Heart Fail. 1, 17–24 (2008).

    CAS  PubMed  Google Scholar 

  52. Solomon, S. D. et al. Effect of the direct renin inhibitor aliskiren on left ventricular remodelling following myocardial infarction with systolic dysfunction. Eur. Heart J. 32, 1227–1234 (2011).

    CAS  PubMed  Google Scholar 

  53. Yokokawa, F. & Maibaum, J. Recent advances in the discovery of non-peptidic direct renin inhibitors as antihypertensives: new patent applications in years 2000–2008. Expert. Opin. Ther. 18, 581–602 (2008).

    CAS  Google Scholar 

  54. Unger, T. & Dahlöf, B. Compound 21, the first orally active, selective agonist of the angiotensin type 2 receptor (AT2): implications for AT2 receptor research and therapeutic potential. J. Renin Angiotensin Aldosterone Syst. 11, 75–77 (2010).

    CAS  PubMed  Google Scholar 

  55. Sica, D. A. Pharmacokinetics and pharmacodynamics of mineralocorticoid blocking agents and their effects on potassium homeostasis. Heart Failure. Rev. 10, 23–29 (2005).

    CAS  Google Scholar 

  56. Jansen, P. M., van den Meiracker, A. H. & Jan Danser, A. H. Aldosterone synthase inhibitors: pharmacological and clinical aspects. Curr. Opin. Investig. Drugs 10, 319–326 (2009).

    CAS  PubMed  Google Scholar 

  57. Mulder, P. et al. Aldosterone synthase inhibition improves cardiovascular function and structure in rats with heart failure: a comparison with spironolactone. Eur. Heart J. 29, 2171–2179 (2008).

    CAS  PubMed  Google Scholar 

  58. Amar, L. et al. Aldosterone synthase inhibition with LCI699: a proof-of-concept study in patients with primary aldosteronism. Hypertension 56, 831–838 (2010).

    CAS  PubMed  Google Scholar 

  59. Mann, D. L. & Bristow, M. R. Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation 111, 2837–2849 (2005).

    PubMed  Google Scholar 

  60. Landmesser, U., Wollert, K. C. & Drexler, H. Potential novel pharmacological therapies for myocardial remodelling. Cardiovasc. Res. 81, 519–527 (2009). This review summarizes the molecular mechanisms that lead to left ventricular remodelling and dysfunction and analyses old and novel therapeutic strategies for preventing or reversing adverse left ventricular remodelling.

    CAS  PubMed  Google Scholar 

  61. Porter, K. E. & Turner, N. A. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol. Ther. 123, 255–278 (2009).

    CAS  PubMed  Google Scholar 

  62. Brown, R. D., Ambler, S. K., Mitchell, M. D. & Long C. S. The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu. Rev. Pharmacol. Toxicol. 45, 657–687 (2005).

    CAS  PubMed  Google Scholar 

  63. Spinale, F. G. & Wilbur, N. M. Matrix metalloproteinase therapy in heart failure. Curr. Treat. Options Cardiovasc. Med. 11, 339–346 (2009).

    PubMed  PubMed Central  Google Scholar 

  64. Hudson, M. P. et al. Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction: results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) trial. J. Am. Coll. Cardiol. 48, 15–20 (2006).

    CAS  PubMed  Google Scholar 

  65. Singh, R. B., Dandekar, S. P., Elimban, V., Gupta, S. K. & Dhalla, N. S. Role of proteases inthe pathophysiology of cardiac disease. Mol. Cell. Biochem. 263, 241–256 (2004).

    CAS  PubMed  Google Scholar 

  66. Fildes, J. E., Shaw, S. M., Yonan, N. & Williams, S. G. The immune system and chronic heart failure: is the heart in control? J. Am. Coll. Cardiol. 53, 1013–1020 (2009).

    CAS  PubMed  Google Scholar 

  67. Ikonomidis, I. et al. Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation 117, 2662–2669 (2008).

    CAS  PubMed  Google Scholar 

  68. Abbate, A. et al. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study). Am. J. Cardiol. 105, 1371–1377 (2010).

    CAS  PubMed  Google Scholar 

  69. Timmers, L. et al. Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ. Res. 102, 257–264 (2008).

    CAS  PubMed  Google Scholar 

  70. Kelly, D. J. et al. Tranilast attenuates diastolic dysfunction and structural injury in experimental diabetic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 293, H2860–H2869 (2007).

    CAS  PubMed  Google Scholar 

  71. Tsai, E. J. & Kass, D. A. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol. Ther. 122, 216–238 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wollert, K. C. & Drexler, H. Regulation of cardiac remodeling by nitric oxide: focus on cardiac myocyte hypertrophy and apoptosis. Heart Fail. Rev. 7, 317–325 (2002).

    CAS  PubMed  Google Scholar 

  73. Forfia, P. R. et al. Acute phosphodiesterase 5 inhibition mimics hemodynamic effects of B-type natriuretic peptide and potentiates B-type natriuretic peptide effects in failing but not normal canine heart. J. Am. Coll. Cardiol. 49, 1079–1088 (2007).

    CAS  PubMed  Google Scholar 

  74. Guazzi, M. Clinical use of phosphodiesterase-5 inhibitors in chronic heart failure. Circ. Heart Fail. 1, 272–280 (2008).

    PubMed  Google Scholar 

  75. Guazzi, M. et al. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ. Heart Fail. 4, 8–17 (2011).

    CAS  PubMed  Google Scholar 

  76. Qin, F., Simeone, M. & Patel, R. Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction. Free Radic. Biol. Med. 43, 271–281 (2007).

    CAS  PubMed  Google Scholar 

  77. Saliaris, A. P. et al. Chronic allopurinol administration ameliorates maladaptive alterations in Ca2+ cycling proteins and β-adrenergic hyporesponsiveness in heart failure. Am. J. Physiol. Heart Circ. Physiol. 292, H1328–H1335 (2007).

    CAS  PubMed  Google Scholar 

  78. Hare, J. M. et al. Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J. Am. Coll. Cardiol. 51, 2301–2309 (2008).

    CAS  PubMed  Google Scholar 

  79. Palaniyandi, S. S., Sun, L., Ferreira, J. C. & Mochly-Rosen, D. Protein kinase C in heart failure: a therapeutic target? Cardiovasc. Res. 82, 229–239 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Backs, J. & Olson, E. N. Control of cardiac growth by histone acetylation/deacetylation. Circ. Res. 98, 15–24 (2006).

    CAS  PubMed  Google Scholar 

  81. Bossuyt, J. et al. Ca2+/calmodulin-dependent protein kinase IIδ and protein kinase D overexpression reinforce the histone deacetylase 5 redistribution in heart failure. Circ. Res. 102, 695–702 (2008).

    CAS  PubMed  Google Scholar 

  82. Zhang, R. et al. Calmodulin kinase II inhibition protects against structural heart disease. Nature Med. 11, 409–417 (2005).

    CAS  PubMed  Google Scholar 

  83. Sossalla, S. et al. Inhibition of elevated Ca2+/calmodulin-dependent protein kinase II improves contractility in human failing myocardium. Circ. Res. 107, 1150–1161 (2010).

    CAS  PubMed  Google Scholar 

  84. Willemsen, S. et al. Effects of alagebrium, an advanced glycation end-product breaker, in patients with chronic heart failure: study design and baseline characteristics of the BENEFICIAL trial. Eur. J. Heart Fail. 12, 294–300 (2010).

    CAS  PubMed  Google Scholar 

  85. Wehrens, X. H., Lehnart, S. E. & Marks, A. R. Intracellular calcium release and cardiac disease. Annu. Rev. Physiol. 67, 69–98 (2005).

    CAS  PubMed  Google Scholar 

  86. Ikeda, Y., Hoshijima, M. & Chien, K. R. Toward biologically targeted therapy of calcium cycling defects in heart failure. Physiology 23, 6–16 (2008).

    CAS  PubMed  Google Scholar 

  87. Belevych, A. et al. Enhanced ryanodine receptor-mediated calcium leak determines reduced sarcoplasmic reticulum calcium content in chronic canine heart failure. Biophys. J. 93, 4083–4092 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lompré, A. M. et al. Ca2+ cycling and new therapeutic approaches for heart failure. Circulation 121, 822–830 (2010).

    PubMed  PubMed Central  Google Scholar 

  89. Blayney, L. M. & Lai, F. A. Ryanodine receptor-mediated arrhythmias and sudden cardiac death. Pharmacol. Ther. 123, 151–177 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Poller, W., Hajjar, R., Schultheiss, H. P. & Fechner, H. Cardiac-targeted delivery of regulatory RNA molecules and genes for the treatment of heart failure. Cardiovasc. Res. 86, 353–364 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Jin, D. et al. Abstract 3911: a novel small molecule approach for treating mechano-electrical dysfunction in heart failure. Circulation 120, S885 (2009).

    Google Scholar 

  92. Ai, X., Curran, J. W., Shannon, T. R., Bers, D. M. & Pogwizd, S. M. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ. Res. 97, 1314–1322 (2005).

    CAS  PubMed  Google Scholar 

  93. Yano, M. et al. Correction of defective interdomain interaction within ryanodine receptor by antioxidant is a new therapeutic strategy against heart failure. Circulation 112, 3633–3643 (2005).

    CAS  PubMed  Google Scholar 

  94. Mackrill, J. J. Ryanodine receptor calcium channels and their partners as drug targets. Biochem. Pharmacol. 79, 1535–1543 (2010).

    CAS  PubMed  Google Scholar 

  95. Toischer, K. et al. K201 improves aspects of the contractile performance of human failing myocardium via reduction in Ca2+ leak from the sarcoplasmic reticulum. Basic Res. Cardiol. 105, 279–287 (2010).

    CAS  PubMed  Google Scholar 

  96. Couvreur, N. et al. Chronic heart rate reduction with ivabradine improves systolic function of the reperfused heart through a dual mechanism involving a direct mechanical effect and a long-term increase in FKBP12/12.6 expression. Eur. Heart J. 31, 1529–1537 (2010).

    CAS  PubMed  Google Scholar 

  97. Lemmens, K., Segers, V. F., Demolder, M. & De Keulenaer, G. W. Role of neuregulin-1/ErbB2 signaling in endothelium-cardiomyocyte cross-talk. J. Biol. Chem. 281, 19469–19477 (2006).

    CAS  PubMed  Google Scholar 

  98. Gao, R. et al. A Phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J. Am. Coll. Cardiol. 55, 1907–1914 (2010).

    CAS  PubMed  Google Scholar 

  99. Ashrafian, H., Frenneaux, M. P. & Opie, L. H. Metabolic mechanisms in heart failure. Circulation 116, 434–448 (2007).

    CAS  PubMed  Google Scholar 

  100. Lopaschuk, G. D., Ussher, J. R., Folmes, C. D., Jaswal, J. S. & Stanley, W. C. Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 90, 207–258 (2010).

    CAS  PubMed  Google Scholar 

  101. Ussher, J. R. & Lopaschuk, G. D. Targeting malonyl CoA inhibition of mitochondrial fatty acid uptake as an approach to treat cardiac ischemia/reperfusion. Basic Res. Cardiol. 104, 203–210 (2009).

    CAS  PubMed  Google Scholar 

  102. Inzucchi, S. E. & McGuire, D. K. New drugs for the treatment of diabetes: part II: incretin-based therapy and beyond. Circulation 117, 574–584 (2008).

    PubMed  Google Scholar 

  103. Ban, K. et al. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117, 2340–2350 (2008).

    CAS  PubMed  Google Scholar 

  104. Sokos, G. G., Nikolaidis, L. A., Mankad, S., Elahi, D. & Shannon, R. P. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J. Card. Fail. 12, 694–699 (2006).

    CAS  PubMed  Google Scholar 

  105. Read, P. A., Khan, F. Z., Heck, P. M., Hoole, S. P. & Dutka, D. P. DPP-4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease. Circ. Cardiovasc. Imaging 3, 195–201 (2010).

    PubMed  Google Scholar 

  106. Witteles, R. M. & Fowler, M. B. Insulin-resistant cardiomyopathy: clinical evidence, mechanisms, and treatment options. J. Am. Coll. Cardiol. 51, 93–102 (2008).

    CAS  PubMed  Google Scholar 

  107. Eurich, D. T. et al. Benefits and harms of antidiabetic agents in patients with diabetes and heart failure: systematic review. BMJ 335, 497–501 (2007). This meta-analysis showed that metformin is the only antidiabetic agent that is not associated with measurable harm in patients with diabetes and heart failure, but it is associated with reduced mortality.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. MacDonald, M. R. et al. Treatment of type 2 diabetes and outcomes in patients with heart failure: a nested case-control study from the UK. General Practice Research database. Diabetes Care 33, 1213–1218 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Bertrand, L. et al. AMPK activation restores the stimulation of glucose uptake in an in vitro model of insulin-resistant cardiomyocytes via the activation of protein kinase B. Am. J. Physiol. Heart Circ. Physiol. 291, H239–H250 (2006).

    CAS  PubMed  Google Scholar 

  110. Ren, J., Dominguez, L. J., Sowers, J. R. & Davidoff, A. J. Metformin but not glyburide prevents high glucose-induced abnormalities in relaxation and intracellular Ca2+ transients in adult rat ventricular myocytes. Diabetes 48, 2059–2065 (1999).

    CAS  PubMed  Google Scholar 

  111. Sacca, L. Heart failure as a multiple hormonal deficiency syndrome. Circ. Heart Fail. 2, 151–156 (2009).

    PubMed  Google Scholar 

  112. Pingitore, A. et al. Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low-T3 syndrome: a randomized, placebo-controlled study. J. Clin. Endocrinol. Metab. 93, 1351–1358 (2008).

    CAS  PubMed  Google Scholar 

  113. Soukoulis, V. et al. Micronutrient deficiencies an unmet need in heart failure. J. Am. Coll. Cardiol. 54, 1660–1673 (2009).

    CAS  PubMed  Google Scholar 

  114. Tavazzi, L. et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet 372, 1223–1230 (2008).

    PubMed  Google Scholar 

  115. Lavie, C. J., Milani, R. V., Mehra, M. R. & Ventura, H. O. Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J. Am. Coll. Cardiol. 54, 585–594 (2009).

    CAS  PubMed  Google Scholar 

  116. Pocok, S. J. et al. Predictors of mortality and morbidity in patients with chronic heart failure. Eur. Heart J. 27, 65–75 (2007).

    Google Scholar 

  117. Massion, P. B. & Balligand, J. L. Modulation of cardiac contraction, relaxation and rate by the endothelial nitric oxide synthase (eNOS): lessons from genetically modified mice. J. Physiol. 546, 63–75 (2003).

    CAS  PubMed  Google Scholar 

  118. Kamp, O. et al. Effect of the long-term administration of nebivolol on clinical symptoms, exercise capacity and left ventricular function in patients with heart failure and preserved left ventricular ejection fraction: background, aims and design of the ELANDD study. Clin. Res. Cardiol. 99, 75–82 (2010).

    CAS  PubMed  Google Scholar 

  119. Silberman, G. A. et al. Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. Circulation 121, 519–528 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Wohlfart, P. et al. Antiatherosclerotic effects of small-molecular-weight compounds enhancing endothelial nitric-oxide synthase (eNOS) expression and preventing eNOS uncoupling. J. Pharmacol. Exp. Ther. 325, 370–379 (2008).

    CAS  PubMed  Google Scholar 

  121. Phan, T. T. et al. Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. J. Am. Coll. Cardiol. 54, 402–409 (2009).

    PubMed  Google Scholar 

  122. Zaza, A., Belardinelli, L. & Shryock, J. C. Pathophysiology and pharmacology of the cardiac “late sodium current.” Pharmacol. Ther. 119, 326–339 (2008).

    CAS  PubMed  Google Scholar 

  123. Rastogi, S. et al. Ranolazine combined with enalapril or metoprolol prevents progressive LV dysfunction and remodeling in dogs with moderate heart failure. Am. J. Physiol. Heart Circ. Physiol. 295, H2149–H2155 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Finley, J. J., Konstam, M. A. & Udelson, J. E. Arginine vasopressin antagonists for the treatment of heart failure and hyponatremia. Circulation 118, 410–421 (2008).

    PubMed  Google Scholar 

  125. Gheorghiade, M. et al. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: the EVEREST clinical status trials. JAMA 297, 1332–1343 (2007).

    CAS  PubMed  Google Scholar 

  126. Konstam, M. A. et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST outcome trial. JAMA 297, 1319–1331 (2007).

    CAS  PubMed  Google Scholar 

  127. Anand, I. S. Anemia and chronic heart failure implications and treatment options. J. Am. Coll. Cardiol. 52, 501–511 (2008).

    PubMed  Google Scholar 

  128. Okonko, O. D. et al. Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemic patients with symptomatic chronic heart failure and iron deficiency. J. Am. Coll. Cardiol. 51, 103–112 (2008).

    CAS  PubMed  Google Scholar 

  129. Anker, S. D. et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. New Engl. J. Med. 361, 2436–2448 (2009).

    CAS  PubMed  Google Scholar 

  130. Timmer, S. A., De Boer, K., Knaapen, P., Götte, M. J. & Van Rossum, A. C. The potential role of erythropoietin in chronic heart failure: from the correction of anemia to improved perfusion and reduced apoptosis? J. Card. Fail. 15, 353–361 (2009).

    CAS  PubMed  Google Scholar 

  131. Ngo, K. et al. Erythropoiesis-stimulating agents for anaemia in chronic heart failure patients. Cochrane Database Syst. Rev. 20 Jan 2010 (doi:10.1002/14651858.CD007613.pub2).

  132. Jin, B., Luo, X., Lin, H., Li, J. & Shi, H. A meta-analysis of erythropoiesis-stimulating agents in anaemic patients with chronic heart failure. Eur. J. Heart Fail. 12, 249–253 (2010).

    CAS  PubMed  Google Scholar 

  133. Van der Meer, P., Groenveld, H., Januzzi, J. & Van Veldhuisen, D. J. Erythropoietin treatment in patients with chronic heart failure: a meta-analysis. Heart 95, 1309–1314 (2009).

    CAS  PubMed  Google Scholar 

  134. Singh, A. K. et al. Correction of anemia with epopoetin alfa in chronic kidney disease. N. Engl. J. Med. 355, 2085–2098 (2006).

    CAS  PubMed  Google Scholar 

  135. Bennett, C. L. et al. Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia. JAMA 299, 914–924 (2008).

    CAS  PubMed  Google Scholar 

  136. McMurray, J. J. et al. Design of the reduction of events with darbopoetin alfa in heart failure (RED-HF): a Phase III, anemia correction, morbidity–mortality trial. Eur. Heart J. 11, 795–801 (2009).

    CAS  Google Scholar 

  137. Tamargo, J. et al. Investigational positive inotropic agents for acute heart failure. Cardiovasc. Hematol. Disord. Drug Targets 9, 193–205 (2009).

    CAS  PubMed  Google Scholar 

  138. Teerlink, J. R. et al. Agents with inotropic properties for the management of acute heart failure syndromes. Traditional agents and beyond. Heart Fail. Rev. 14, 243–253 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Goldhaber, J. & Hamilton, J. A. Role of inotropic agents in the treatment of heart failure. Circulation 121, 1655–1660 (2010). In this article, the authors reviewed the most appropriate use of inotropic agents in four patients with heart failure.

    PubMed  PubMed Central  Google Scholar 

  140. De Luca, L., Colucci, W. S., Nieminen, M. S., Massie, B. M. & Gheorghiade, M. Evidence-based use of levosimendan in different clinical settings. Eur. Heart J. 27, 1908–1920 (2006).

    CAS  PubMed  Google Scholar 

  141. Cleland, J. G., Freemantle, N., Coletta, A P. & Clark, A. L. Clinical trials update from the American Heart Association: REPAIRAMI, ASTAMI, JELIS, MEGA, REVIVE-II, SURVIVE, and PROACTIVE. Eur. J. Heart. Fail. 8, 105–110 (2006).

    CAS  PubMed  Google Scholar 

  142. Gheorghiade, M. et al. Hemodynamic, echocardiographic, and neurohormonal effects of istaroxime, a novel intravenous inotropic and lusitropic agent: a randomized controlled trial in patients hospitalized with heart failure. J. Am. Coll. Cardiol. 51, 2276–2285 (2008).

    CAS  PubMed  Google Scholar 

  143. Shah, S. J. et al. Effects of istaroxime on diastolic stiffness in acute heart failure syndromes: results from the hemodynamic, echocardiographic, and neurohormonal effects of istaroxime, a novel intravenous inotropic and lusitropic agent: a randomized controlled trial in patients hospitalized with heart failure (HORIZON-HF) trial. Am. Heart. J. 157, 1035–1041 (2009).

    CAS  PubMed  Google Scholar 

  144. Teerlink, J. R. A novel approach to improve cardiac performance: cardiac myosin activators. Heart Fail. Rev. 14, 289–298 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Tamargo, J., López-Farré, A., Caballero, R. & Delpón, E. Omecamtiv mecarbil. Drugs Future 34, 950–961 (2009).

    CAS  Google Scholar 

  146. Japp, A. G. et al. Vascular effects of apelin in vivo in man. J. Am. Coll. Cardiol. 52, 908–913 (2008).

    CAS  PubMed  Google Scholar 

  147. Japp, A. G. et al. Acute cardiovascular effects of apelin in humans: potential role in patients with chronic heart failure. Circulation 121, 1818–1827 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Carlos III Health Institute (PI080665 and ISCIII-RETIC RD06/0009-FEDER) and the Spanish Society of Cardiology. We would like to thank E. Delpón for her critical reading and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Tamargo.

Ethics declarations

Competing interests

José Lopez-Sendón declares an association with the following pharmaceutical companies: Servier, Pfizer, Amgen and Novartis.

Supplementary information

Supplementary Information (Table S1)

Major large-scale randomized clinical trials comparing the effects of new developing drugs in patients with heart failure (PDF 457 kb)

Related links

Related links

FURTHER INFORMATION

Juan Tamargo's homepage

José López-Sendón's homepage

ClinicalTrials.gov

ISRCTN Register

Glossary

Left ventricular ejection fraction

(LVEF). The percentage of blood that is pumped out from the left ventricles of the heart with each heart beat.

Inotropes

Drugs that increase (positive inotropes) or decrease (negative inotropes) myocardial contractility.

Heart failure with preserved ejection fraction

(HFPEF). Patients who have heart failure but with a normal left ventricular ejection fraction; that is, above 40–50% (there is no consensus for the cut-off).

Neurohumoral profile

A decrease in cardiac pump function that is associated with a neurohumoral response, which is characterized by the activation of the renin–angiotensin–aldosterone and sympathetic nervous systems and elevated circulating levels of natriuretic peptides, vasopressin, endothelin-1, urotensins, adrenomedullin and nitric oxide.

Loop diuretics

Diurectics that inhibit the Na+/K+/2Cl co-transporter in the luminal membrane of the thick ascending limb of the loop of Henle. They are the most powerful diuretics available.

Ischaemic pre-conditioning

An increased tolerance to ischaemia and reperfusion that is induced by a previous sublethal period of ischaemia.

Left ventricular filling pressure

The pressure that builds up in the left ventricle as it is being filled with blood.

Myocardial oxygen demands

(MVO2). This relates to the amount of oxygen consumed per minute that is required to regenerate the ATP that is used by membrane transport mechanisms and in the excitation–contraction process. MVO2 is expressed as ml O2 per min per 100g of cardiac tissue.

Lusitropic effects

The effects of a drug on the properties of ventricular relaxation.

NT-proBNP

Amino terminal proBNP (NT-proBNP) is a cleavage product of the precursor brain natriuretic peptide (BNP).

Neprilysin

A zinc-dependent metalloproteinase that degrades several small secreted peptides such as natriuretic peptides, angiotensin II and endothelin-1.

Peripheral hypoperfusion

The decreased perfusion of organs (mainly skin, kidney and brain) as a result of a decrease in the pumping function of the heart, which results in cold, clammy skin, oliguria or lethargy.

Crossbridge cycle

The entire process by which the myosin heads interact with the actin filament.

dP/dtmax

The maximum rate of left ventricular systolic pressure development — an indirect index of cardiac contractility.

Left ventricular assist devices

Surgically implanted mechanical pumps that take blood from the left ventricle and pump it into the aorta.

Intestinal L cells

Cells that are found throughout the lining of the gastrointestinal tract and contain regulatory peptide hormones and/or biogenic amines.

Global and regional left ventricular performance

Changes in global left ventricular or regional (segmental) left ventricular contraction and function, respectively.

Functional class

A classification of the severity of heart failure that is based on the symptoms and exercise capacity of the patient (known as the New York Heart Association functional classification).

Preload reduction

The preload is the pressure and volume of blood that is present in the left ventricle at the end of diastole. The major drugs that reduce the preload in heart failure are loop diuretics and nitrates, which dilate the veins to reduce the amount of blood returning to the heart via the venous system.

Precipitant factors

Factors that may not be the underlying cause of the illness, but cause or contribute to the occurrence of heart failure or to hospitalization.

Titin springs

A large part of the titin molecule (a giant protein that is located in the sarcomere) that functions as a spring and develops passive stiffness when sarcomeres are stretched.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamargo, J., López-Sendón, J. Novel therapeutic targets for the treatment of heart failure. Nat Rev Drug Discov 10, 536–555 (2011). https://doi.org/10.1038/nrd3431

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3431

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research