Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Contemporary pharmacological treatment and management of heart failure

Abstract

The prevention and treatment strategies for heart failure (HF) have evolved in the past two decades. The stages of HF have been redefined, with recognition of the pre-HF state, which encompasses asymptomatic patients who have developed either structural or functional cardiac abnormalities or have elevated plasma levels of natriuretic peptides or cardiac troponin. The first-line treatment of patients with HF with reduced ejection fraction includes foundational therapies with angiotensin receptor–neprilysin inhibitors, angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, β-blockers, mineralocorticoid receptor antagonists, sodium–glucose cotransporter 2 (SGLT2) inhibitors and diuretics. The first-line treatment of patients with HF with mildly reduced ejection fraction or with HF with preserved ejection fraction includes SGLT2 inhibitors and diuretics. The timely initiation of these disease-modifying therapies and the optimization of treatment are crucial in all patients with HF. Reassessment after initiation of these therapies is recommended to evaluate patient symptoms, health status and left ventricular function, and timely referral to a HF specialist is necessary if a patient has persistent advanced HF symptoms or worsening HF. Lifestyle modification and treatment of comorbidities such as diabetes mellitus, ischaemic heart disease and atrial fibrillation are crucial through each stage of HF. This Review provides an overview of the management strategies for HF according to disease stages that are derived from the recommendations in the latest US and European HF guidelines.

Key points

  • Patients with cardiovascular risk factors such as hypertension, diabetes mellitus, ischaemic heart disease, obesity, a family history of cardiomyopathies or previous exposure to cardiotoxic agents are considered to be at risk of heart failure (HF) and will benefit from HF screening.

  • Patients with stage A pre-HF are those who have developed either structural or functional cardiac abnormalities or have elevated plasma levels of natriuretic peptides or cardiac troponin and who might benefit from close monitoring and early treatment and prevention strategies.

  • The first-line treatment of patients with HF with reduced ejection fraction (HFrEF) includes initiation and optimization of foundational therapy with angiotensin receptor–neprilysin inhibitors (ARNIs), angiotensin-converting enzyme inhibitors (ACEIs) (or angiotensin receptor blockers (ARBs) if ACEIs are not tolerated), β-blockers, mineralocorticoid receptor antagonists (MRAs) and sodium–glucose cotransporter 2 (SGLT2) inhibitors.

  • Additional pharmacological therapies for patients with HFrEF include hydralazine and nitrates in Black patients and consideration of ivabradine, vericiguat and digoxin in selected symptomatic patients.

  • Treatment of patients with HF with mildly reduced ejection fraction (HFmrEF) or HF with preserved ejection fraction (HFpEF) now includes SGLT2 inhibitors as first-line therapy; additional therapies include diuretics if congestion is present and consideration of ARNIs, ARBs and MRAs in patients with HFmrEF or HFpEF, and ACEIs or ARBs and β-blockers in patients with HFmrEF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Recommendations for pharmacological therapy across all stages of HF.
Fig. 2: Stepwise initiation and optimization of pharmacological therapy and indicated device therapy for patients with HFrEF.
Fig. 3: Stepwise initiation and optimization of pharmacological therapy and indicated device therapy in patients with HFmrEF or HFpEF.

Similar content being viewed by others

References

  1. Stewart, S., Ekman, I., Ekman, T., Oden, A. & Rosengren, A. Population impact of heart failure and the most common forms of cancer: a study of 1 162 309 hospital cases in Sweden (1988 to 2004). Circ. Cardiovasc. Qual. Outcomes 3, 573–580 (2010).

    Article  PubMed  Google Scholar 

  2. Bozkurt, B. et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J. Card. Fail. 27, 387–413 (2021).

    Article  Google Scholar 

  3. Tsao, C. W. et al. Heart disease and stroke statistics-2023 update: a report from the American Heart Association. Circulation 147, e93–e621 (2023).

    Article  PubMed  Google Scholar 

  4. Bozkurt, B. Heart failure epidemiology and outcomes statistics. J. Card. Fail. 29, 1412–1451 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vasan, R. S., Enserro, D. M., Beiser, A. S. & Xanthakis, V. Lifetime risk of heart failure among participants in the Framingham study. J. Am. Coll. Cardiol. 79, 250–263 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 79, e263–e421 (2022).

    Article  PubMed  Google Scholar 

  7. Siddiqi, T. J. et al. Trends in heart failure-related mortality among older adults in the United States from 1999-2019. JACC Heart Fail. 10, 851–859 (2022).

    Article  PubMed  Google Scholar 

  8. Jain, V. et al. Demographic and regional trends of heart failure-related mortality in young adults in the US, 1999-2019. JAMA Cardiol. 7, 900–904 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bozkurt, B. et al. Mortality, outcomes, costs, and use of medicines following a first heart failure hospitalization: EVOLUTION HF. JACC Heart Fail. 11, 1320–1332 (2023).

    Article  PubMed  Google Scholar 

  10. Bozkurt, B. It is time to screen for heart failure: why and how? JACC Heart Fail. 10, 598–600 (2022).

    Article  PubMed  Google Scholar 

  11. McDonagh, T. A. et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 42, 3599–3726 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Del Gobbo, L. C. et al. Contribution of major lifestyle risk factors for incident heart failure in older adults: the cardiovascular health study. JACC Heart Fail. 3, 520–528 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hu, G., Jousilahti, P., Antikainen, R., Katzmarzyk, P. T. & Tuomilehto, J. Joint effects of physical activity, body mass index, waist circumference, and waist-to-hip ratio on the risk of heart failure. Circulation 121, 237–244 (2010).

    Article  PubMed  Google Scholar 

  14. Uijl, A. et al. Risk for heart failure: the opportunity for prevention with the American Heart Association’s Life’s Simple 7. JACC Heart Fail. 7, 637–647 (2019).

    Article  PubMed  Google Scholar 

  15. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377, 644–657 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Wiviott, S. D. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380, 347–357 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Pi-Sunyer, X. et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med. 373, 11–22 (2015).

    Article  PubMed  Google Scholar 

  19. Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marso, S. P. et al. Effects of liraglutide on cardiovascular outcomes in patients with diabetes with or without heart failure. J. Am. Coll. Cardiol. 75, 1128–1141 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Jorsal, A. et al. Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE) — a multicentre, double-blind, randomised, placebo-controlled trial. Eur. J. Heart Fail. 19, 69–77 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Margulies, K. B. et al. Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 316, 500–508 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hamad, F. et al. Systematic review of glucagon-like peptide one receptor agonist liraglutide of subjects with heart failure with reduced left ventricular ejection fraction. Curr. Diabetes Rev. 17, 280–292 (2021).

    Article  PubMed  Google Scholar 

  24. Lingvay, I. et al. Semaglutide for cardiovascular event reduction in people with overweight or obesity: SELECT study baseline characteristics. Obesity 31, 111–122 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Novo Nordisk A/S. Semaglutide 2.4 mg reduces the risk of major adverse cardiovascular events by 20% in adults with overweight or obesity in the SELECT trial. Press release 8 August 2023. https://www.novonordisk.com/news-and-media/news-and-ir-materials/news-details.html?id=166301 (2023).

  26. Lincoff, A. M. et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N. Engl. J. Med. 389, 2221–2232 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Ledwidge, M. et al. Natriuretic peptide-based screening and collaborative care for heart failure: the STOP-HF randomized trial. JAMA 310, 66–74 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Pop-Busui, R. et al. Heart failure: an underappreciated complication of diabetes. a consensus report of the american diabetes association. Diabetes Care 45, 1670–1690 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pfeffer, M. A. et al. Angiotensin receptor-neprilysin inhibition in acute myocardial infarction. N. Engl. J. Med. 385, 1845–1855 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Solomon, S. D. et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N. Engl. J. Med. 387, 1089–1098 (2022).

    Article  PubMed  Google Scholar 

  31. Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451–1461 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Udell, J. A. et al. Sodium glucose cotransporter-2 inhibition for acute myocardial infarction: JACC review topic of the week. J. Am. Coll. Cardiol. 79, 2058–2068 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Bozkurt, B. Pre-heart failure: an important opportunity to prevent a deadly disease. JACC Heart Fail. 11, 1027–1031 (2023).

    Article  PubMed  Google Scholar 

  34. Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Wanner, C. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 375, 323–334 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Marx, N. et al. 2023 ESC guidelines for the management of cardiovascular disease in patients with diabetes. Eur. Heart J. 44, 4043–4140 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Filippatos, G. et al. Finerenone reduces risk of incident heart failure in patients with chronic kidney disease and type 2 diabetes: analyses from the FIGARO-DKD trial. Circulation 145, 437–447 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Filippatos, G. et al. Finerenone and heart failure outcomes by kidney function/albuminuria in chronic kidney disease and diabetes. JACC Heart Fail. 10, 860–870 (2022).

    Article  PubMed  Google Scholar 

  42. McDonagh, T. A. et al. 2023 focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 44, 3627–3639 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. McMurray, J. J. et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371, 993–1004 (2014).

    Article  PubMed  Google Scholar 

  44. McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Damman, K. et al. Renal effects and associated outcomes during angiotensin-neprilysin inhibition in heart failure. JACC Heart Fail. 6, 489–498 (2018).

    Article  PubMed  Google Scholar 

  47. Chandra, A. et al. Effects of sacubitril/valsartan on physical and social activity limitations in patients with heart failure: a secondary analysis of the PARADIGM-HF trial. JAMA Cardiol. 3, 498–505 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Khariton, Y. et al. Association between sacubitril/valsartan initiation and health status outcomes in heart failure with reduced ejection fraction. JACC Heart Fail. 7, 933–941 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kosiborod, M. N. et al. Effects of dapagliflozin on symptoms, function, and quality of life in patients with heart failure and reduced ejection fraction: results from the DAPA-HF trial. Circulation 141, 90–99 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Doughty, R. N. et al. Effects of carvedilol on left ventricular remodeling after acute myocardial infarction: the CAPRICORN Echo substudy. Circulation 109, 201–206 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Bozkurt, B. et al. New insights into mechanisms of action of carvedilol treatment in chronic heart failure patients—a matter of time for contractility. J. Card. Fail. 18, 183–193 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Poole-Wilson, P. A. et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 362, 7–13 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. No authors listed.Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 353, 2001–2007 (1999).

    Article  Google Scholar 

  54. Konstam, M. A. et al. Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dysfunction in patients with heart failure. SOLVD Investigators. Circulation 86, 431–438 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Cicoira, M. et al. Long-term, dose-dependent effects of spironolactone on left ventricular function and exercise tolerance in patients with chronic heart failure. J. Am. Coll. Cardiol. 40, 304–310 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Januzzi, J. L. Jr et al. Association of change in N-terminal pro-B-type natriuretic peptide following initiation of sacubitril-valsartan treatment with cardiac structure and function in patients with heart failure with reduced ejection fraction. JAMA 322, 1085–1095 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Khan, M. S. et al. Reverse cardiac remodeling following initiation of sacubitril/valsartan in patients with heart failure with and without diabetes. JACC Heart Fail. 9, 137–145 (2021).

    Article  PubMed  Google Scholar 

  58. Lee, M. M. Y. et al. Effect of empagliflozin on left ventricular volumes in patients with type 2 diabetes, or prediabetes, and heart failure with reduced ejection fraction (SUGAR-DM-HF). Circulation 143, 516–525 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Santos-Gallego, C. G. et al. Randomized trial of empagliflozin in nondiabetic patients with heart failure and reduced ejection fraction. J. Am. Coll. Cardiol. 77, 243–255 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Tromp, J. et al. A systematic review and network meta-analysis of pharmacological treatment of heart failure with reduced ejection fraction. JACC Heart Fail. 10, 73–84 (2022).

    Article  PubMed  Google Scholar 

  61. Wachter, R. et al. Initiation of sacubitril/valsartan in haemodynamically stabilised heart failure patients in hospital or early after discharge: primary results of the randomised TRANSITION study. Eur. J. Heart Fail. 21, 998–1007 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Velazquez, E. J. et al. Angiotensin-neprilysin inhibition in acute decompensated heart failure. N. Engl. J. Med. 380, 539–548 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Desai, A. S. et al. Effect of sacubitril-valsartan vs enalapril on aortic stiffness in patients with heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 322, 1077–1084 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bohm, M. et al. Empagliflozin improves cardiovascular and renal outcomes in heart failure irrespective of systolic blood pressure. J. Am. Coll. Cardiol. 78, 1337–1348 (2021).

    Article  PubMed  Google Scholar 

  65. McMurray, J. J. V. et al. Effects of dapagliflozin in patients with kidney disease, with and without heart failure. JACC Heart Fail. 9, 807–820 (2021).

    Article  PubMed  Google Scholar 

  66. Ferreira, J. P. et al. Interplay of mineralocorticoid receptor antagonists and empagliflozin in heart failure: EMPEROR-reduced. J. Am. Coll. Cardiol. 77, 1397–1407 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Bozkurt, B. et al. Neprilysin inhibitors in heart failure. JACC Basic Transl. Sci. 8, 88–105 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mann, D. L. et al. Effect of treatment with sacubitril/valsartan in patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA Cardiol. 7, 17–25 (2022).

    Article  PubMed  Google Scholar 

  69. Vaduganathan, M. et al. Time to clinical benefit of dapagliflozin in patients with heart failure with mildly reduced or preserved ejection fraction: a prespecified secondary analysis of the DELIVER randomized clinical trial. JAMA Cardiol. 7, 1259–1263 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bozkurt, B. How to initiate and uptitrate GDMT in heart failure: practical stepwise approach to optimization of GDMT. JACC Heart Fail. 10, 992–995 (2022).

    Article  PubMed  Google Scholar 

  71. Mebazaa, A. et al. Safety, tolerability and efficacy of up-titration of guideline-directed medical therapies for acute heart failure (STRONG-HF): a multinational, open-label, randomised, trial. Lancet 400, 1938–1952 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Voors, A. A. et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial. Nat. Med. 28, 568–574 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bhatt, D. L. et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N. Engl. J. Med. 384, 117–128 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Bozkurt, B. What to and not to monitor for uptitration of GDMT in patients with heart failure: the case for patient self-uptitration of GDMT. JACC Heart Fail. 10, 881–884 (2022).

    Article  PubMed  Google Scholar 

  75. Bhatt, A. S., DeVore, A. D., DeWald, T. A., Swedberg, K. & Mentz, R. J. Achieving a maximally tolerated beta-blocker dose in heart failure patients: is there room for improvement? J. Am. Coll. Cardiol. 69, 2542–2550 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Packer, M. et al. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. ATLAS Study Group. Circulation 100, 2312–2318 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Mohebi, R. et al. Dose-response to sacubitril/valsartan in patients with heart failure and reduced ejection fraction. J. Am. Coll. Cardiol. 80, 1529–1541 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Rohde, L. E. et al. Sacubitril/valsartan and sudden cardiac death according to implantable cardioverter-defibrillator use and heart failure cause: a PARADIGM-HF analysis. JACC Heart Fail. 8, 844–855 (2020).

    Article  PubMed  Google Scholar 

  79. Taylor, A. L. et al. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N. Engl. J. Med. 351, 2049–2057 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Armstrong, P. W. et al. Vericiguat in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 382, 1883–1893 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Anker, S. D. et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 361, 2436–2448 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Ponikowski, P. et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur. Heart J. 36, 657–668 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Ponikowski, P. et al. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial. Lancet 396, 1895–1904 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Mentz, R. J. et al. Ferric carboxymaltose in heart failure with iron deficiency. N. Engl. J. Med. 389, 975–986 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Ponikowski, P. et al. Efficacy of ferric carboxymaltose in heart failure with iron deficiency: an individual patient data meta-analysis. Eur. Heart J. 44, 5077–5091 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Salah, H. M., Fudim, M. & Burkhoff, D. Device interventions for heart failure. JACC Heart Fail. 11, 1039–1054 (2023).

    Article  PubMed  Google Scholar 

  87. Hahn, R. T., Brener, M. I., Cox, Z. L., Pinney, S. & Lindenfeld, J. Tricuspid regurgitation management for heart failure. JACC Heart Fail. 11, 1084–1102 (2023).

    Article  PubMed  Google Scholar 

  88. Okumus, N., Abraham, S., Puri, R. & Tang, W. H. W. Aortic valve disease, transcatheter aortic valve replacement, and the heart failure patient: a state-of-the-art review. JACC Heart Fail. 11, 1070–1083 (2023).

    Article  PubMed  Google Scholar 

  89. Lander, M. M. et al. Mitral interventions in heart failure. JACC Heart Fail. 11, 1055–1069 (2023).

    Article  PubMed  Google Scholar 

  90. Bozkurt, B. et al. Cardiac rehabilitation for patients with heart failure: JACC expert panel. J. Am. Coll. Cardiol. 77, 1454–1469 (2021).

    Article  PubMed  Google Scholar 

  91. Abraham, W. T. et al. Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes. Eur. Heart J. 42, 700–710 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Greene, S. J. et al. Worsening heart failure: nomenclature, epidemiology, and future directions: JACC review topic of the week. J. Am. Coll. Cardiol. 81, 413–424 (2023).

    Article  PubMed  Google Scholar 

  93. Bozkurt, B. Nonresponse to heart failure therapy: an important trajectory. JACC Heart Fail. 11, 729–732 (2023).

    Article  PubMed  Google Scholar 

  94. Morris, A. A. et al. Guidance for timely and appropriate referral of patients with advanced heart failure: a scientific statement from the American Heart Association. Circulation 144, e238–e250 (2021).

    Article  PubMed  Google Scholar 

  95. Bozkurt, B. Treatment of advanced (stage D) heart failure in the new era. JACC Heart Fail. 11, 258–260 (2023).

    Article  PubMed  Google Scholar 

  96. Solomon, S. D. et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N. Engl. J. Med. 381, 1609–1620 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Pitt, B. et al. Spironolactone for heart failure with preserved ejection fraction. N. Engl. J. Med. 370, 1383–1392 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Yusuf, S. et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet 362, 777–781 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Solomon, S. D. et al. Influence of ejection fraction on outcomes and efficacy of spironolactone in patients with heart failure with preserved ejection fraction. Eur. Heart J. 37, 455–462 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Lund, L. H. et al. Heart failure with mid-range ejection fraction in CHARM: characteristics, outcomes and effect of candesartan across the entire ejection fraction spectrum. Eur. J. Heart Fail. 20, 1230–1239 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Solomon, S. D. et al. Sacubitril/valsartan across the spectrum of ejection fraction in heart failure. Circulation 141, 352–361 (2020).

    Article  PubMed  Google Scholar 

  102. Cleland, J. G. F. et al. Beta-blockers for heart failure with reduced, mid-range, and preserved ejection fraction: an individual patient-level analysis of double-blind randomized trials. Eur. Heart J. 39, 26–35 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Desai, A. S., Lam, C. S. P., McMurray, J. J. V. & Redfield, M. M. How to manage heart failure with preserved ejection fraction: practical guidance for clinicians. JACC Heart Fail. 11, 619–636 (2023).

    Article  PubMed  Google Scholar 

  104. Halliday, B. P. et al. Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial. Lancet 393, 61–73 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kitzman, D. W. et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 315, 36–46 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shimada, Y. J., Tsugawa, Y., Brown, D. F. M. & Hasegawa, K. Bariatric surgery and emergency department visits and hospitalizations for heart failure exacerbation: population-based, self-controlled series. J. Am. Coll. Cardiol. 67, 895–903 (2016).

    Article  PubMed  Google Scholar 

  107. Doumouras, A. G. et al. Bariatric surgery and cardiovascular outcomes in patients with obesity and cardiovascular disease:: a population-based retrospective cohort study. Circulation 143, 1468–1480 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Kosiborod, M. N. et al. Design and baseline characteristics of STEP-HFpEF program evaluating semaglutide in patients with obesity HFpEF phenotype. JACC Heart Fail. 11, 1000–1010 (2023).

    Article  PubMed  Google Scholar 

  109. Kosiborod, M. N. et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N. Engl. J. Med. 389, 1069–1084 (2023).

    Article  CAS  PubMed  Google Scholar 

  110. Metra, M. et al. Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ. Heart Fail. 5, 54–62 (2012).

    Article  PubMed  Google Scholar 

  111. Logeart, D. et al. Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. J. Am. Coll. Cardiol. 43, 635–641 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Mullens, W. et al. Acetazolamide in acute decompensated heart failure with volume overload. N. Engl. J. Med. 387, 1185–1195 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Kittleson, M. M. et al. ACC expert consensus decision pathway on comprehensive multidisciplinary care for the patient with cardiac amyloidosis: a report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 81, 1076–1126 (2023).

    Article  PubMed  Google Scholar 

  114. Maurer, M. S. et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N. Engl. J. Med. 379, 1007–1016 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Khan, M. S. et al. Albuminuria and heart failure: JACC state-of-the-art review. J. Am. Coll. Cardiol. 81, 270–282 (2023).

    Article  CAS  PubMed  Google Scholar 

  116. Kontorovich, A. R. Approaches to genetic screening in cardiomyopathies: practical guidance for clinicians. JACC Heart Fail. 11, 133–142 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biykem Bozkurt.

Ethics declarations

Competing interests

B.B. has served in consultation or advisory committee roles for Abiomed, American Regent, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Cytokinetics, Daiichi Sankyo, Johnson & Johnson, Hanger Institute, Merck, Occlutech, Regeneron, Roche, Sanofi, scPharmaceuticals, Vifor and Zoll/Respicardia, and is on the clinical event committees of Abbott Vascular and the data safety monitoring committees of Cardurion, Liva Nova, Novo Nordisk and Renovacor.

Peer review

Peer review information

Nature Reviews Cardiology thanks Aldo Pietro Maggioni and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozkurt, B. Contemporary pharmacological treatment and management of heart failure. Nat Rev Cardiol (2024). https://doi.org/10.1038/s41569-024-00997-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-024-00997-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing