Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Water-assisted laser desorption/ionization mass spectrometry for minimally invasive in vivo and real-time surface analysis using SpiderMass

Abstract

Rapid, sensitive, precise and accurate analysis of samples in their native in vivo environment is critical to better decipher physiological and physiopathological mechanisms. SpiderMass is an ambient mass spectrometry (MS) system designed for mobile in vivo and real-time surface analyses of biological tissues. The system uses a fibered laser, which is tuned to excite the most intense vibrational band of water, resulting in a process termed water-assisted laser desorption/ionization (WALDI). The water molecules act as an endogenous matrix in a matrix-assisted laser desorption ionization (MALDI)-like scenario, leading to the desorption/ionization of biomolecules (lipids, metabolites and proteins). The ejected material is transferred to the mass spectrometer through an atmospheric interface and a transfer line that is several meters long. Here, we formulate a three-stage procedure that includes (i) a laser system setup coupled to a Waters Q-TOF or Thermo Fisher Q Exactive mass analyzer, (ii) analysis of specimens and (iii) data processing. We also describe the optimal setup for the analysis of cell cultures, fresh-frozen tissue sections and in vivo experiments on skin. With proper optimization, the system can be used for a variety of different targets and applications. The entire procedure takes 1–2 d for complex samples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic representation of the SpiderMass setup for in vivo experiments.
Fig. 2: A flowchart of a standard SpiderMass experiment.
Fig. 3: Close-up of the microsampling probe.
Fig. 4: Interface.
Fig. 5: Typical MS spectra of bovine liver.
Fig. 6: Reproducibility experiment.
Fig. 7: Two-class classification of 33 dog sarcoma samples.

Similar content being viewed by others

Data availability

All published data presented here are publicly available and can be found in the PRIDE Archive (https://www.ebi.ac.uk/pride/archive/). The dog sarcoma data are available from the ProteomeXchange Consortium (PXD010990), Real-time molecular diagnosis of tumors using water-assisted laser desorption/ionization mass spectrometry technology.

References

  1. Takats, Z., Strittmatter, N. & McKenzie, J. S. Ambient mass spectrometry in cancer research. Adv. Cancer Res. 134, 231–256 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, J. et al. Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system. Sci. Transl. Med. 9, eaan3968 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Fatou, B. et al. In vivo real-time mass spectrometry for guided surgery application. Sci. Rep. 6, 25919 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Balog, J. et al. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci. Transl. Med. 5, 194ra93 (2013).

    Article  PubMed  CAS  Google Scholar 

  5. Huang, M.-Z., Cheng, S.-C., Cho, Y.-T. & Shiea, J. Ambient ionization mass spectrometry: a tutorial. Anal. Chim. Acta 702, 1–15 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Alberici, R. M. et al. Ambient mass spectrometry: bringing MS into the “real world”. Anal. Bioanal. Chem. 398, 265–294 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Takáts, Z., Wiseman, J. M., Gologan, B. & Cooks, R. G. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306, 471–473 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. Laiko, V. V., Baldwin, M. A. & Burlingame, A. L. Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 72, 652–657 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Laiko, V. V. et al. Desorption/ionization of biomolecules from aqueous solutions at atmospheric pressure using an infrared laser at 3 μm. J. Am. Soc. Mass Spectrom. 13, 354–361 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Nemes, P. & Vertes, A. Laser ablation electrospray ionization for atmospheric pressure molecular imaging mass spectrometry. Methods Mol. Biol. 656, 159–171 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Nemes, P., Woods, A. S. & Vertes, A. Simultaneous imaging of small metabolites and lipids in rat brain tissues at atmospheric pressure by laser ablation electrospray ionization mass spectrometry. Anal. Chem. 82, 982–988 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sampson, J. S., Hawkridge, A. M. & Muddiman, D. C. Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 17, 1712–1716 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, C., Dill, A. L., Eberlin, L. S., Cooks, R. G. & Ifa, D. R. Mass spectrometry imaging under ambient conditions. Mass Spectrom. Rev. 32, 218–243 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, H., Talaty, N. N., Takáts, Z. & Cooks, R. G. Desorption electrospray ionization mass spectrometry for high-throughput analysis of pharmaceutical samples in the ambient environment. Anal. Chem. 77, 6915–6927 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Talaty, N., Takáts, Z. & Cooks, R. G. Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization. Analyst 130, 1624–1633 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Takáts, Z., Wiseman, J. M. & Cooks, R. G. Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. J. Mass Spectrom. 40, 1261–1275 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. Katona, M., Dénes, J., Skoumal, R., Tóth, M. & Takáts, Z. Intact skin analysis by desorption electrospray ionization mass spectrometry. Analyst 136, 835–840 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Hayashi, Y. et al. Intact metabolite profiling of mouse brain by probe electrospray ionization/triple quadrupole tandem mass spectrometry (PESI/MS/MS) and its potential use for local distribution analysis of the brain. Anal. Chim. Acta 983, 160–165 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Zaitsu, K. et al. Intact endogenous metabolite analysis of mice liver by probe electrospray ionization/triple quadrupole tandem mass spectrometry and its preliminary application to in vivo real-time analysis. Anal. Chem. 88, 3556–3561 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Zaitsu, K. et al. In vivo real-time monitoring system using probe electrospray ionization/tandem mass spectrometry for metabolites in mouse brain. Anal. Chem. 90, 4695–4701 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, J., Cooks, R. G. & Ouyang, Z. Biological tissue diagnostics using needle biopsy and spray ionization mass spectrometry. Anal. Chem. 83, 9221–9225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song, Y., Liao, J., Zha, C., Wang, B. & Liu, C. C. A novel approach to determine the tyrosine concentration in human plasma by DART-MS/MS. Anal. Methods 7, 1600–1605 (2015).

    Article  CAS  Google Scholar 

  23. Zhou, M., McDonald, J. F. & Fernández, F. M. Optimization of a direct analysis in real time/time-of-flight mass spectrometry method for rapid serum metabolomic fingerprinting. J. Am. Soc. Mass Spectrom 21, 68–75 (2010).

    Article  PubMed  CAS  Google Scholar 

  24. Schäfer, K.-C. et al. In vivo, in situ tissue analysis using rapid evaporative ionization mass spectrometry. Angew. Chem. Int. Edn 48, 8240–8242 (2009).

    Article  CAS  Google Scholar 

  25. Phelps, D. L. et al. The surgical intelligent knife distinguishes normal, borderline and malignant gynaecological tissues using rapid evaporative ionisation mass spectrometry (REIMS). Br. J. Cancer 118, 1349–1358 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. St John, E. R. et al. Rapid evaporative ionisation mass spectrometry of electrosurgical vapours for the identification of breast pathology: towards an intelligent knife for breast cancer surgery. Breast Cancer Res. 19, 59 (2017).

    Article  CAS  Google Scholar 

  27. Balog, J. et al. In vivo endoscopic tissue identification by rapid evaporative ionization mass spectrometry (REIMS). Angew. Chem. Int. Edn 54, 11059–11062 (2015).

    Article  CAS  Google Scholar 

  28. Sans, M. et al. Performance of the MasSpec Pen for rapid diagnosis of ovarian cancer. Clin. Chem. 65, 674–683 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fournier, I. et al. Device for real-time in vivo molecular analysis. WO2016046748 (A1) (2014).

  30. Schäfer, K.-C. et al. In situ, real-time identification of biological tissues by ultraviolet and infrared laser desorption ionization mass spectrometry. Anal. Chem. 83, 1632–1640 (2011).

    Article  CAS  Google Scholar 

  31. Berkenkamp, S., Karas, M. & Hillenkamp, F. Ice as a matrix for IR-matrix-assisted laser desorption/ionization: mass spectra from a protein single crystal. Proc. Natl Acad. Sci. USA 93, 7003–7007 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pirkl, A., Soltwisch, J., Draude, F. & Dreisewerd, K. Infrared matrix-assisted laser desorption/ionization orthogonal-time-of-flight mass spectrometry employing a cooling stage and water ice as a matrix. Anal. Chem. 84, 5669–5676 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Fatou, B. et al. Remote atmospheric pressure infrared matrix-assisted laser desorption-ionization mass spectrometry (remote IR-MALDI MS) of proteins. Mol. Cell. Proteomics 17, 1637–1649 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saudemont, P. et al. Real-time molecular diagnosis of tumors using water-assisted laser desorption/ionization mass spectrometry technology. Cancer Cell 34, 840–851 (2018).

    Article  PubMed  CAS  Google Scholar 

  35. Fatou, B. et al. Real time and in vivo pharmaceutical and environmental studies with SpiderMass instrument. J. Biotechnol. 281, 61–66 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Fatou, B., Salzet, M. & Fournier, I. Real time human micro-organisms biotyping based on water-assisted laser desorption/ionization. EuroBiotech J. 3, 97–104 (2019).

    Article  Google Scholar 

  37. Woolman, M. et al. Rapid determination of medulloblastoma subgroup affiliation with mass spectrometry using a handheld picosecond infrared laser desorption. Chem. Sci. 8, 6508–6519 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zou, J. et al. Ambient mass spectrometry imaging with picosecond infrared laser ablation electrospray ionization (PIR-LAESI). Anal. Chem. 87, 12071–12079 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Woolman, M. et al. Optimized mass spectrometry analysis workflow with polarimetric guidance for ex vivo and in situ sampling of biological tissues. Sci. Rep. 7, 468 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Strohalm, M., Hassman, M., Košata, B. & Kodíček, M. mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Commun. Mass Spectrom. 22, 905–908 (2008).

    Article  PubMed  CAS  Google Scholar 

  41. Strohalm, M., Kavan, D., Novák, P., Volný, M. & Havlíček, V. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal. Chem. 82, 4648–4651 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Gagnon, H. et al. Proprotein convertase 1/3 (PC1/3) in the rat alveolar macrophage cell line NR8383: localization, trafficking and effects on cytokine secretion. PLoS ONE 8, e61557 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Duhamel, M. et al. Molecular consequences of proprotein convertase 1/3 (PC1/3) inhibition in macrophages for application to cancer immunotherapy: a proteomic study. Mol. Cell. Proteomics 14, 2857–2877 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duhamel, M. et al. Paclitaxel treatment and proprotein convertase 1/3 (PC1/3) knockdown in macrophages is a promising antiglioma strategy as revealed by proteomics and cytotoxicity studies. Mol. Cell. Proteomics 17, 1126–1143 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of SATT-Nord involved in SpiderMass and, in particular, E. Rollet and F.-X. Denimal for their support of the project. This work was funded by the Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation, Université de Lille and Inserm. The project was also funded by ANR-14-CE17-0021 REALITY’MS (I.F.), Inserm Programme PhysiCancer SPIDERMASS (M.S.), Région Hauts de France-EU FEDER O’DREAMS (D.T., I.F. and M.S.) and SIRIC ONCOLille grant INCa-DGOS-Inserm 6041aa (D.T., I.F. and M.S.). SpiderMass was awarded Best Breakthrough Innovation Prize by the MATWIN 2015 international board.

Author information

Authors and Affiliations

Authors

Contributions

N.O., P.S. and J.B. wrote the original draft of the manuscript. P.S., N.O. and J.-P.G. carried out the experiments. P.S. and I.F. developed the technique. Q.P. collected the samples and performed the histology. Y.-M.R. did histology and validated diagnostics. P.S., J.B. and I.F. analyzed the data. I.F., M.S. and D.T. designed the study. I.F., M.S. and Z.T. corrected the manuscript. I.F. and M.S. supervised the project and provided the funding.

Corresponding authors

Correspondence to Michel Salzet or Isabelle Fournier.

Ethics declarations

Competing interests

J.B. is an employee of Waters Research Center. M.S. and I.F. are inventors on a patent (priority no. WO2015IB57301 20150922) related to part of the described protocol. Q.P. is an employee of OCR. D.T. is founder and CEO of OCR. Z.T. is a consultant for Waters Corporation. The system is under protection by patent CA2961491 A1 (29). The remaining authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Fatou, B. et al. Sci. Rep. 6, 25919 (2016): https://www.nature.com/articles/srep25919

Fatou, B. et al. J. Biotechnol. 281, 61–66 (2018): https://www.sciencedirect.com/science/article/pii/S0168165618305169

Saudemont, P. et al. Cancer Cell 34, 840–851.E4 (2018): https://www.cell.com/cancer-cell/fulltext/S1535-6108(18)30423-9

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogrinc, N., Saudemont, P., Balog, J. et al. Water-assisted laser desorption/ionization mass spectrometry for minimally invasive in vivo and real-time surface analysis using SpiderMass. Nat Protoc 14, 3162–3182 (2019). https://doi.org/10.1038/s41596-019-0217-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0217-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research