Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Rapid ex vivo molecular fingerprinting of biofluids using laser-assisted rapid evaporative ionization mass spectrometry

Abstract

Of the many metabolites involved in any clinical condition, only a narrow range of biomarkers is currently being used in the clinical setting. A key to personalized medicine would be to extend this range. Metabolic fingerprinting provides a more comprehensive insight, but many methods used for metabolomics analysis are too complex and time-consuming to be diagnostically useful. Here, a rapid evaporative ionization mass spectrometry (REIMS) system for direct ex vivo real-time analysis of biofluids with minor sample pretreatment is detailed. The REIMS can be linked to various laser wavelength systems (such as optical parametric oscillator or CO2 laser) and with automation for high-throughput analysis. Laser-induced sample evaporation occurs within seconds through radiative heating with the plume guided to the MS instrument. The presented procedure includes (i) laser setup with automation, (ii) analysis of biofluids (blood/urine/stool/saliva/sputum/breast milk) and (iii) data analysis. We provide the optimal settings for biofluid analysis and quality control, enabling sensitive, precise and robust analysis. Using the automated setup, 96 samples can be analyzed in ~35–40 min per ionization mode, with no intervention required. Metabolic fingerprints are made up of 2,000–4,000 features, for which relative quantification can be achieved at high repeatability when total ion current normalization is applied. With saliva and feces as example matrices, >70% of features had a coefficient of variance ≤30%. However, to achieve acceptable long-term reproducibility, additional normalizations by, e.g., LOESS are recommended, especially for positive ionization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic representation of the LA-REIMS workflow.
Fig. 2: A flowchart of a standard LA-REIMS biofluid analysis experiment.
Fig. 3: Typical burns for LA-REIMS analysis.
Fig. 4: Close-up of the motorized automated sampling area and its connection to the REIMS source.
Fig. 5: Typical mass spectra as obtained by LA-REIMS analysis of human biofluids.
Fig. 6: Typical m/z profiles as obtained by LA-REIMS analysis of human biofluids.
Fig. 7: Multivariate modeling of pathophysiological state based on LA-REIMS fingerprints.

Similar content being viewed by others

Data availability

Datasets relevant to our published supporting primary papers can be made available from the corresponding author upon reasonable request. The source data for figures are publicly available in the Figshare repository: Fig. 3, https://doi.org/10.6084/m9.figshare.14258423.v1; Fig. 5, https://doi.org/10.6084/m9.figshare.14258438.v1; Fig. 6 https://doi.org/10.6084/m9.figshare.14258459.v2.

References

  1. Gong, Z., Zhang, J. & Xu, Y.-J. Metabolomics reveals that Momordica charantia attenuates metabolic changes in experimental obesity. Phyther. Res 31, 296–302 (2017).

    Article  Google Scholar 

  2. Pham-Tuan, H., Kaskavelis, L., Daykin, C. A. & Janssen, H. G. Method development in high-performance liquid chromatography for high-throughput profiling and metabonomic studies of biofluid samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 789, 283–301 (2003).

    Article  CAS  Google Scholar 

  3. Wishart, D. S. Metabolomics for investigating physiological and pathophysiological processes. Physiol. Rev. 99, 1819–1875 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Johnson, C. H., Ivanisevic, J. & Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17, 451–459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ferreira, C. R. et al. Ambient ionization mass spectrometry for point-of-care diagnostics and other clinical measurements. Clin. Chem. 62, 99–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Cameron, S. J. S. et al. Evaluation of direct from sample metabolomics of human feces using rapid evaporative ionization mass spectrometry. Anal. Chem. 91, 13448–13457 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Ogrinc, N. et al. Water-assisted laser desorption/ionization mass spectrometry for minimally invasive in vivo and real-time surface analysis using SpiderMass. Nat. Protoc. 14, 3162–3182 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Schäfer, K. C. et al. In vivo, in situ tissue analysis using rapid evaporative ionization mass spectrometry. Angew. Chem. Int. Ed. 48, 8240–8242 (2009).

    Article  CAS  Google Scholar 

  9. Clendinen, C. S., Monge, M. E. & Fernández, F. M. Ambient mass spectrometry in metabolomics. Analyst 142, 3101–3117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, L., Hsieh, H. & Hsu, C. Clinical application of ambient ionization. Mass Spectrom. (Tokyo) 6, Spec Iss S0060 (2017).

  11. Van Meulebroek, L. et al. Rapid LA-REIMS and comprehensive UHPLC-HRMS for metabolic phenotyping of feces. Talanta 217, 121043 (2020).

    Article  PubMed  CAS  Google Scholar 

  12. Wijnant, K. et al. Validated ultra-high-performance liquid chromatography hybrid high- resolution mass spectrometry and laser-assisted rapid evaporative ionization mass spectrometry for salivary metabolomics. Anal. Chem. 92, 5116–5124 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Fatou, B. et al. In vivo real-time mass spectrometry for guided surgery application. Sci. Rep. 6, 25919 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuo, T. H., Dutkiewicz, E. P., Pei, J. & Hsu, C. C. Ambient ionization mass spectrometry today and tomorrow: embracing challenges and opportunities. Anal. Chem. 92, 2353–2363 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Schäfer, K.-C. et al. In situ, real-time identification of biological tissues by ultraviolet and infrared laser desorption ionization mass spectrometry. Anal. Chem. 83, 1632–1640 (2011).

    Article  CAS  Google Scholar 

  16. Balog, J. et al. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci. Transl. Med. 5, 1–11 (2013).

    Article  CAS  Google Scholar 

  17. Feider, C. L., Krieger, A., Dehoog, R. J. & Eberlin, L. S. Ambient ionization mass spectrometry: recent developments and applications. Anal. Chem. 91, 4266–4290 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fillet, M. & Fre, M. Metabolomics in medicinal chemistry. The emergence of metabolomics as a key discipline in the drug discovery process. Drug Discov. Today Technol. 13, 19–24 (2015).

    Article  PubMed  Google Scholar 

  19. Golf, O. et al. Rapid evaporative ionization mass spectrometry imaging platform for direct mapping from bulk tissue and bacterial growth media. Anal. Chem. 87, 2527–2534 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Nemes, P. & Vertes, A. Ambient mass spectrometry for in vivo local analysis and in situ molecular tissue imaging. Trends Analyt. Chem. 34, 22–34 (2012).

    Article  CAS  Google Scholar 

  21. Jones, E. A. et al. Matrix assisted rapid evaporative ionization mass spectrometry. Anal. Chem. 91, 9784–9791 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Suva, M. A brief review on dried blood spots applications in drug development. J. Pharm. Biosci. 2, 17–23 (2014).

    Google Scholar 

  23. Van Meulebroek, L. et al. Holistic lipidomics of the human gut phenotype using validated ultra-high-performance liquid chromatography coupled to hybrid orbitrap mass spectrometry. Anal. Chem. 22, 12502–12510 (2017).

    Article  CAS  Google Scholar 

  24. Zhao, J., Evans, C. R., Carmody, L. A. & LiPuma, J. J. Impact of storage conditions on metabolite profiles of sputum samples from persons with cystic fibriosis. J. Cyst. Fibros. 14, 468–473 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Paepe, E. et al. A validated multi-matrix platform for metabolomic fingerprinting of human urine, feces and plasma using ultra-high performance liquid-chromatography coupled to hybrid orbitrap high-resolution mass spectrometry. Anal. Chim. Acta 1033, 108–118 (2018).

    Article  PubMed  CAS  Google Scholar 

  26. Cameron, S. J. S. & Takáts, Z. Mass spectrometry approaches to metabolic profiling of microbial communities within the human gastrointestinal tract. Methods (San. Diego, Calif.) 149, 13–24 (2018).

    Article  CAS  Google Scholar 

  27. Gowers, G. O. F. et al. Off-colony screening of biosynthetic libraries by rapid laser-enabled mass spectrometry. ACS Synth. Biol. 8, 2566–2575 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Williams, J. P. & Scrivens, J. H. Coupling desorption electrospray ionisation and neutral desorption/extractive electrospray ionisation with a travelling-wave based ion mobility mass spectrometer for the analysis of drugs. Rapid Commun. Mass Spectrom. 22, 187–196 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. De Spiegeleer, M. et al. Impact of storage conditions on the human stool metabolome and lipidome: preserving the most accurate fingerprint. Anal. Chim. Acta 1108, 79–88 (2020).

    Article  PubMed  CAS  Google Scholar 

  30. Laparre, J. et al. Impact of storage conditions on the urinary metabolomics fingerprint. Anal. Chim. Acta 951, 99–107 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Cheng, K., Brunius, C., Fristedt, R. & Landberg, R. An LC-QToF MS based method for untargeted metabolomics of human fecal samples. Metabolomics 16, 46 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Pluskal, T. T., Castillo, S., Villar-Briones, A., Oresic, M. & Orešič, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinforma. 11, 395 (2010).

    Article  CAS  Google Scholar 

  34. Abdi, H. Partial least squares regression and projection on latent structure regression. Wiley Interdiscip. Rev. Comput. Stat. 2, 97–106 (2010).

    Article  Google Scholar 

  35. Bylesjö, M. et al. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J. Chemom. 20, 341–351 (2006).

    Article  CAS  Google Scholar 

  36. Quinn, R. A. et al. Microbial, host and xenobiotic diversity in the cystic fibriosis sputum metabolome. ISME J. 10, 1483–1498 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Smilowitz, J. T. et al. The human milk metabolome reveals diverse oligosaccharide profiles. J. Nutr. 143, 1709–1718 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matysik, S., Le Roy, C. I., Liebisch, G. & Claus, S. P. Metabolomics of fecal samples: a practical consideration. Trends Food Sci. Technol. 57, 244–255 (2016).

    Article  CAS  Google Scholar 

  39. Naz, S., Vallejo, M., García, A. & Barbas, C. Method validation strategies involved in non-targeted metabolomics. J. Chromatogr. A 1353, 99–105 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Cameron, S. J. S. et al. Sample preparation free mass spectrometry using Laser-Assisted Rapid Evaporative Ionization Mass Spectrometry: applications to microbiology, metabolic biofluid phenotyping, and food authenticity. J. Am. Soc. Mass Spectrom. 32, 1393–1401 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Roelants, M., Hauspie, R. & Hoppenbrouwers, K. References for growth and pubertal development from birth to 21 years in Flanders, Belgium. Ann. Hum. Biol. 36, 680–694 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Cole, T. J. & Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 7, 284–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Zheng, J., Dixon, R. A. & Li, L. Development of isotope labeling LC-MS for human salivary metabolomics and application to profiling metabolome changes associated with mild cognitive impairment. Anal. Chem. 84, 10802–10811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pinto, J. et al. Human plasma stability during handling and storage: impact on NMR metabolomics. Analyst 139, 1168–1177 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Berkow, S. E. et al. Lipases and lipids in human milk: effect of freeze–thawing and storage. Pediatr. Res. 18, 1257–1262 (1984).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by VLAIO (grant number IM 150740 – A16/OC/0006), BOF GOA (grant number 2017/000102), BOF (grant number 01J07519), FWO Hercules (grant number AUG/17/09), FWO (grant numbers 1S57920N and 1S49020N) and ERC FWO Runner-up (grant number G0G0119N). The Laboratory of Chemical Analysis research group is part of the Ghent University expertise centre MSsmall.

Author information

Authors and Affiliations

Authors

Contributions

V.P., L.V.M., M.D.G., M.D.S., E.D.P. and S.C. wrote the original draft of the manuscript. V.P., L.V.M., E.V.d.W. and A.P. carried out the experiments. M.D.G. and A.P. performed the data analysis. L.V.M., E.D.P. and S.C. collected the samples. Z.T. and S.C. developed the technique. L.V., Z.T. and S.C. supervised the project and provided the funding. L.V., M.D.S. and L.V.M. performed the proofreading and correction of the manuscript.

Corresponding author

Correspondence to Lynn Vanhaecke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Arash Zarrine-Afsar and the other, anonymous reviewer(s) for their contribution to the peer review of this work

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Cameron, S. et al. Anal. Chem. 91, 13488 (2019): https://pubs.acs.org/doi/abs/10.1021/acs.analchem.9b02358

Wijnant, K. et al. Anal. Chem. 92, 5116 (2020): https://pubs.acs.org/doi/10.1021/acs.analchem.9b05598

Van Meulebroek, L. et al. Talanta 217, 121043 (2020): https://www.sciencedirect.com/science/article/pii/S0039914020303349

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plekhova, V., Van Meulebroek, L., De Graeve, M. et al. Rapid ex vivo molecular fingerprinting of biofluids using laser-assisted rapid evaporative ionization mass spectrometry. Nat Protoc 16, 4327–4354 (2021). https://doi.org/10.1038/s41596-021-00580-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00580-8

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research