Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

The origins of the molecular era of adhesion research

Abstract

Recognition of the importance of cell adhesion grew steadily during the twentieth century as it promised answers to fundamental questions in diverse fields that included cell biology, developmental biology, tumorigenesis, immunology and neurobiology. However, the route towards a better understanding of its molecular basis was long and difficult, with many false starts. Major progress was made in the late 1970s to late 1980s with the identification of the major families of adhesion molecules, including integrins and cadherins. This in turn set the stage for the explosive growth in adhesion research over the past 25 years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Early observations that adhesion mediates tissue association in invertebrates.
Figure 2: Experimental strategies that allowed the identification of adhesion molecules.
Figure 3: Localization of the adhesion component vinculin using fluorescence microscopy.
Figure 4: Participants in the 1987 Fibronectin Gordon Research Conference.

References

  1. Hynes, R. O. Integrins: a family of cell surface receptors. Cell 48, 549–554 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Harrison, R. G. Observations on the livining developing nerve fiber. Proceedings of the society for experimental biology and medicine. 4, 140–143 (1907).

  3. Lewis, W. H. The adhesive quality of cells. Anat. Record 23, 387–392 (1922).

    Article  Google Scholar 

  4. Herbst, K. Über das Auseinandergehen von Furchungs- und Gewebezellen in Ca-freiem Medium. Arch. Entwicklungsmech. 9, 424–463 (1900).

    Article  Google Scholar 

  5. Wilson, H. V. On some phenomena of coalescence and regeneration in sponges. J. Exp. Zool. 5, 245–258 (1907).

    Article  Google Scholar 

  6. Galtsoff, P. S. The amoeboid movement of dissociated sponge cells. Biol. Bull. 57, 153–161 (1923).

    Article  Google Scholar 

  7. Galtsoff, P. S. Regeneration after dissociation (an experimental study on sponges). J. Exp. Zool. 42, 183–221 (1925).

    Article  CAS  Google Scholar 

  8. Holtfreter, J. Gewebeaffinität, ein Mittel der embryonalen Formbildung. Arch. Exp. Zellforsch. Gewebezucht 23, 169–209 (1939).

    Google Scholar 

  9. Townes, P. L. & Holtfreter, J. Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128, 53–120 (1955).

    Article  Google Scholar 

  10. Moscona, A. & Moscona, H. The dissociation and aggregation of cells from organ rudiments of the early chick embryo. J. Anat. 86, 287–301 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Moscona, A. Rotation-mediated histogenetic aggregation of dissociated cells. A quantifiable approach to cell interactions in vitro. Exp. Cell Res. 22, 455–475 (1961).

    Article  CAS  PubMed  Google Scholar 

  12. Tyler, A. The auto-antibody concept of cell structure, growth and differentiation. Growth 10, 7–19 (1947).

    Google Scholar 

  13. Weiss, P. The problem of specificity in growth and development. Yale J. Biol. Med. 19, 235–278 (1947).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Spiegel, M. The role of specific surface antigens in cell adhesion. Part I. The reaggregation of sponge cells. Biol. Bull. 107, 130–148 (1954).

    Article  Google Scholar 

  15. Spiegel, M. The role of specific surface antigens in cell adhesion. Part II. Studies on embryonic amphibian cells. Biol. Bull. 107, 149–155 (1954).

    Article  Google Scholar 

  16. Sperry, R. W. Optic nerve regeneration with return of vision in anurans. J. Neurophysiol. 7, 57–69 (1944).

    Article  Google Scholar 

  17. Sperry, R. W. Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl Acad. Sci. USA 50, 703–710 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Coman, D. R. Decreased mutual adhesiveness, a property of cells from squamous cell carcinomas. Cancer Res. 4, 625–629 (1944).

    Google Scholar 

  19. Stoker, M. G. The Leeuwenhoek lecture, 1971. Tumour viruses and the sociology of fibroblasts. Proc. R. Soc. Lond. B Biol. Sci. 181, 1–17 (1972).

    Article  CAS  PubMed  Google Scholar 

  20. Stoker, M., O'Neill, C., Berryman, S. & Waxman, V. Anchorage and growth regulation in normal and virus-transformed cells. Int. J. Cancer 3, 683–693 (1968).

    Article  CAS  PubMed  Google Scholar 

  21. Stoker, M. G. & Rubin, H. Density dependent inhibition of cell growth in culture. Nature 215, 171–172 (1967).

    Article  CAS  PubMed  Google Scholar 

  22. Abercrombie, M. Contact inhibition and malignancy. Nature 281, 259–262 (1979).

    Article  CAS  PubMed  Google Scholar 

  23. Abercrombie, M. & Heaysman, J. E. Observations on the social behaviour of cells in tissue culture. I. Speed of movement of chick heart fibroblasts in relation to their mutual contacts. Exp. Cell Res. 5, 111–131 (1953).

    Article  CAS  PubMed  Google Scholar 

  24. Warren, L., Fuhrer, J. P. & Buck, C. A. Surface glycoproteins of cells before and after transformation by oncogenic viruses. Fed. Proc. 32, 80–85 (1973).

    CAS  PubMed  Google Scholar 

  25. Burger, M. M. Surface changes in transformed cells detected by lectins. Fed. Proc. 32, 91–101 (1973).

    CAS  PubMed  Google Scholar 

  26. Roseman, S. Reflections on glycobiology. J. Biol. Chem. 276, 41527–41542 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Beug, H., Katz, F. E., Stein, A. & Gerisch, G. Quantitation of membrane sites in aggregating Dictyostelium cells by use of tritiated univalent antibody. Proc. Natl Acad. Sci. USA 70, 3150–3154 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Muller, K. & Gerisch, G. A specific glycoprotein as the target site of adhesion blocking Fab in aggregating Dictyostelium cells. Nature 274, 445–449 (1978).

    Article  CAS  PubMed  Google Scholar 

  29. Thiery, J. P., Brackenbury, R., Rutishauser, U. & Edelman, G. M. Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina. J. Biol. Chem. 252, 6841–6845 (1977).

    CAS  PubMed  Google Scholar 

  30. Rutishauser, U., Thiery, J. P., Brackenbury, R. & Edelman, G. M. Adhesion among neural cells of the chick embryo. III. Relationship of the surface molecule CAM to cell adhesion and the development of histotypic patterns. J. Cell Biol. 79, 371–381 (1978).

    Article  CAS  PubMed  Google Scholar 

  31. Takeichi, M. Functional correlation between cell adhesive properties and some cell surface proteins. J. Cell Biol. 75, 464–474 (1977).

    Article  CAS  PubMed  Google Scholar 

  32. Takeichi, M., Atsumi, T., Yoshida, C., Uno, K. & Okada, T. S. Selective adhesion of embryonal carcinoma cells and differentiated cells by Ca2+-dependent sites. Dev. Biol. 87, 340–350 (1981).

    Article  CAS  PubMed  Google Scholar 

  33. Yoshida, C. & Takeichi, M. Teratocarcinoma cell adhesion: identification of a cell-surface protein involved in calcium-dependent cell aggregation. Cell 28, 217–224 (1982).

    Article  CAS  PubMed  Google Scholar 

  34. Nagafuchi, A., Shirayoshi, Y., Okazaki, K., Yasuda, K. & Takeichi, M. Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature 329, 341–343 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Bertolotti, R., Rutishauser, U. & Edelman, G. M. A cell surface molecule involved in aggregation of embryonic liver cells. Proc. Natl Acad. Sci. USA 77, 4831–4835 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kemler, R., Babinet, C., Eisen, H. & Jacob, F. Surface antigen in early differentiation. Proc. Natl Acad. Sci. USA 74, 4449–4452 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hyafil, F., Morello, D., Babinet, C. & Jacob, F. A cell surface glycoprotein involved in the compaction of embryonal carcinoma cells and cleavage stage embryos. Cell 21, 927–934 (1980).

    Article  CAS  PubMed  Google Scholar 

  38. Damsky, C. H., Richa, J., Solter, D., Knudsen, K. & Buck, C. A. Identification and purification of a cell surface glycoprotein mediating intercellular adhesion in embryonic and adult tissue. Cell 34, 455–466 (1983).

    Article  CAS  PubMed  Google Scholar 

  39. Takeichi, M. Cadherins: a molecular family important in selective cell–cell adhesion. Annu. Rev. Biochem. 59, 237–252 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Suzuki, S. T. Protocadherins and diversity of the cadherin superfamily. J. Cell Sci. 109, 2609–2611 (1996).

    CAS  PubMed  Google Scholar 

  41. Yagi, T. & Takeichi, M. Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev. 14, 1169–1180 (2000).

    CAS  PubMed  Google Scholar 

  42. Ozawa, M., Baribault, H. & Kemler, R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 8, 1711–1717 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yonemura, S. Cadherin–actin interactions at adherens junctions. Curr. Opin. Cell Biol. 23, 515–522 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Nelson, W. J. & Nusse, R. Convergence of Wnt, β-catenin, and cadherin pathways. Science 303, 1483–1487 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gumbiner, B. M. Regulation of cadherin-mediated adhesion in morphogenesis. Nature Rev. Mol. Cell Biol. 6, 622–634 (2005).

    Article  CAS  Google Scholar 

  46. Leckband, D. E., le Duc, Q., Wang, N. & de Rooij, J. Mechanotransduction at cadherin-mediated adhesions. Curr. Opin. Cell Biol. 23, 523–530 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Takeichi, M. The cadherin superfamily in neuronal connections and interactions. Nature Rev. Neurosci. 8, 11–20 (2007).

    Article  CAS  Google Scholar 

  48. Yang, J. & Weinberg, R. A. Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818–829 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Lasky, L. A. Lectin cell adhesion molecules (LEC-CAMs): a new family of cell adhesion proteins involved with inflammation. J. Cell Biochem. 45, 139–146 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Rosen, S. D. & Bertozzi, C. R. The selectins and their ligands. Curr. Opin. Cell Biol. 6, 663–673 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Wai Wong, C., Dye, D. E. & Coombe, D. R. The role of immunoglobulin superfamily cell adhesion molecules in cancer metastasis. Int. J. Cell Biol. 2012, 340296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hauschka, S. D. & Konigsberg, I. R. The influence of collagen on the development of muscle clones. Proc. Natl Acad. Sci. USA 55, 119–126 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Michalopoulos, G. & Pitot, H. C. Primary culture of parenchymal liver cells on collagen membranes. Morphological and biochemical observations. Exp. Cell Res. 94, 70–78 (1975).

    Article  CAS  PubMed  Google Scholar 

  54. Emerman, J. T., Enami, J., Pitelka, D. R. & Nandi, S. Hormonal effects on intracellular and secreted casein in cultures of mouse mammary epithelial cells on floating collagen membranes. Proc. Natl Acad. Sci. USA 74, 4466–4470 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, E. Y., Parry, G. & Bissell, M. J. Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. J. Cell Biol. 98, 146–155 (1984).

    Article  CAS  PubMed  Google Scholar 

  56. Curtis, A. S. The mechanism of adhesion of cells to glass. A study by interference reflection microscopy. J. Cell Biol. 20, 199–215 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Izzard, C. S. & Lochner, L. R. Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J. Cell Sci. 21, 129–159 (1976).

    CAS  PubMed  Google Scholar 

  58. Heath, J. P. & Dunn, G. A. Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system. A correlated interference-reflexion and high-voltage electron-microscope study. J. Cell Sci. 29, 197–212 (1978).

    CAS  PubMed  Google Scholar 

  59. Lazarides, E. & Weber, K. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc. Natl Acad. Sci. USA 71, 2268–2272 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lazarides, E. & Burridge, K. α-actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell 6, 289–298 (1975).

    Article  CAS  PubMed  Google Scholar 

  61. Geiger, B. A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell 18, 193–205 (1979).

    Article  CAS  PubMed  Google Scholar 

  62. Burridge, K. & Connell, L. Talin: a cytoskeletal component concentrated in adhesion plaques and other sites of actin–membrane interaction. Cell. Motil. 3, 405–417 (1983).

    Article  CAS  PubMed  Google Scholar 

  63. Hynes, R. O. Alteration of cell-surface proteins by viral transformation and by proteolysis. Proc. Natl Acad. Sci. USA 70, 3170–3174 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yamada, K. M., Yamada, S. S. & Pastan, I. Cell surface protein partially restores morphology, adhesiveness, and contact inhibition of movement to transformed fibroblasts. Proc. Natl Acad. Sci. USA 73, 1217–1221 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hynes, R. O. & Destree, A. T. Relationships between fibronectin (LETS protein) and actin. Cell 15, 875–886 (1978).

    Article  CAS  PubMed  Google Scholar 

  66. Wylie, D. E., Damsky, C. H. & Buck, C. A. Studies on the function of cell surface glycoproteins. I. Use of antisera to surface membranes in the identification of membrane components relevant to cell–substrate adhesion. J. Cell Biol. 80, 385–402 (1979).

    Article  CAS  PubMed  Google Scholar 

  67. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  CAS  PubMed  Google Scholar 

  68. Neff, N. T. et al. A monoclonal antibody detaches embryonic skeletal muscle from extracellular matrices. J. Cell Biol. 95, 654–666 (1982).

    Article  CAS  PubMed  Google Scholar 

  69. Greve, J. M. & Gottlieb, D. I. Monoclonal antibodies which alter the morphology of cultured chick myogenic cells. J. Cell Biochem. 18, 221–229 (1982).

    Article  CAS  PubMed  Google Scholar 

  70. Damsky, C. H., Knudsen, K. A., Bradley, D., Buck, C. A. & Horwitz, A. F. Distribution of the cell substratum attachment (CSAT) antigen on myogenic and fibroblastic cells in culture. J. Cell Biol. 100, 1528–1539 (1985).

    Article  CAS  PubMed  Google Scholar 

  71. Chen, W. T., Greve, J. M., Gottlieb, D. I. & Singer, S. J. Immunocytochemical localization of 140 kD cell adhesion molecules in cultured chicken fibroblasts, and in chicken smooth muscle and intestinal epithelial tissues. J. Histochem. Cytochem. 33, 576–586 (1985).

    Article  CAS  PubMed  Google Scholar 

  72. Horwitz, A., Duggan, K., Buck, C., Beckerle, M. C. & Burridge, K. Interaction of plasma membrane fibronectin receptor with talin — a transmembrane linkage. Nature 320, 531–533 (1986).

    Article  CAS  PubMed  Google Scholar 

  73. Tamkun, J. W. et al. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46, 271–282 (1986).

    Article  CAS  PubMed  Google Scholar 

  74. Pierschbacher, M. D. & Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30–33 (1984).

    Article  CAS  PubMed  Google Scholar 

  75. Pytela, R., Pierschbacher, M. D. & Ruoslahti, E. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell 40, 191–198 (1985).

    Article  CAS  PubMed  Google Scholar 

  76. Springer, T. A. et al. LFA-1 and Lyt-2,3, molecules associated with T lymphocyte-mediated killing; and Mac-1, an LFA-1 homologue associated with complement receptor function. Immunol. Rev. 68, 171–195 (1982).

    Article  CAS  PubMed  Google Scholar 

  77. Sanchez-Madrid, F., Nagy, J. A., Robbins, E., Simon, P. & Springer, T. A. A human leukocyte differentiation antigen family with distinct α-subunits and a common β-subunit: the lymphocyte function-associated antigen (LFA-1), the C3bi complement receptor (OKM1/Mac-1), and the p150,95 molecule. J. Exp. Med. 158, 1785–1803 (1983).

    Article  CAS  PubMed  Google Scholar 

  78. Springer, T. A., Thompson, W. S., Miller, L. J., Schmalstieg, F. C. & Anderson, D. C. Inherited deficiency of the Mac-1, LFA-1, p150,95 glycoprotein family and its molecular basis. J. Exp. Med. 160, 1901–1918 (1984).

    Article  CAS  PubMed  Google Scholar 

  79. Dana, N., Todd, R. F., 3rd, Pitt, J., Springer, T. A. & Arnaout, M. A. Deficiency of a surface membrane glycoprotein (Mo1) in man. J. Clin. Invest. 73, 153–159 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hemler, M. E., Huang, C. & Schwarz, L. The VLA protein family. Characterization of five distinct cell surface heterodimers each with a common 130,000 molecular weight β-subunit. J. Biol. Chem. 262, 3300–3309 (1987).

    CAS  PubMed  Google Scholar 

  81. Nurden, A. T. & Caen, J. P. An abnormal platelet glycoprotein pattern in three cases of Glanzmann's thrombasthenia. Br. J. Haematol. 28, 253–260 (1974).

    Article  CAS  PubMed  Google Scholar 

  82. Phillips, D. R. & Agin, P. P. Platelet membrane defects in Glanzmann's thrombasthenia. Evidence for decreased amounts of two major glycoproteins. J. Clin. Invest. 60, 535–545 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pytela, R., Pierschbacher, M. D., Ginsberg, M. H., Plow, E. F. & Ruoslahti, E. Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg-Gly-Asp-specific adhesion receptors. Science 231, 1559–1562 (1986).

    Article  CAS  PubMed  Google Scholar 

  84. Ginsberg, M. H., Forsyth, J., Lightsey, A., Chediak, J. & Plow, E. F. Reduced surface expression and binding of fibronectin by thrombin-stimulated thrombasthenic platelets. J. Clin. Invest. 71, 619–624 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Leptin, M., Aebersold, R. & Wilcox, M. Drosophila position-specific antigens resemble the vertebrate fibronectin-receptor family. EMBO J. 6, 1037–1043 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Plow, E. F. et al. Immunologic relationship between platelet membrane glycoprotein GPIIb/IIIa and cell surface molecules expressed by a variety of cells. Proc. Natl Acad. Sci. USA 83, 6002–6006 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992).

    Article  CAS  PubMed  Google Scholar 

  88. Schwartz, M. A. & Ginsberg, M. H. Networks and crosstalk: integrin signalling spreads. Nature Cell Biol. 4, E65–E68 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Miranti, C. K. & Brugge, J. S. Sensing the environment: a historical perspective on integrin signal transduction. Nature Cell Biol. 4, E83–E90 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Kim, C., Ye, F. & Ginsberg, M. H. Regulation of integrin activation. Annu. Rev. Cell Dev. Biol. 27, 321–345 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Bershadsky, A. D., Balaban, N. Q. & Geiger, B. Adhesion-dependent cell mechanosensitivity. Annu. Rev. Cell Dev. Biol. 19, 677–695 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Hoffman, B. D., Grashoff, C. & Schwartz, M. A. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316–323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395–406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hanein, D. & Horwitz, A. R. The structure of cell–matrix adhesions: the new frontier. Curr. Opin. Cell Biol. 24, 134–140 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Wilson, H. V. Development of sponges from dissociated tissue cells. Bull. US Bureau Fisheries 30, 1–30 (1910).

    Google Scholar 

Download references

Acknowledgements

The scope, brevity and nature of the perspective format preclude presenting all of the important contributions and citations; the author apologizes to his colleagues for these omissions. He thanks D. DeSimone, M.Schwartz, R. Hynes and B. Gumbiner for their suggestions. A.R.H. was supported by the US National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

41580_2012_BFnrm3473_MOESM1_ESM.pdf

Supplementary Information S1 (figure) | The participant list of the Fibronectin Gordon Research Conference in 1987. (PDF 259 kb)

Related links

Related links

FURTHER INFORMATION

Alan Rick Horwitz's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horwitz, A. The origins of the molecular era of adhesion research. Nat Rev Mol Cell Biol 13, 805–811 (2012). https://doi.org/10.1038/nrm3473

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3473

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing