Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The prion hypothesis: from biological anomaly to basic regulatory mechanism

Key Points

  • An expanding group of proteins, known as prions, has been identified in fungi and mammals. Prions have the ability to confer unique phenotypes on cells and organisms by adopting self-replicating alternative conformations.

  • Although the mammalian prion protein (PrP) induces a fatal neurodegenerative disease following conformational conversion, changes in the structure of fungal prions are associated with the emergence of new phenotypes. These phenotypes represent gain-of-function and/or loss-of-function activities for the corresponding prion proteins.

  • In mammals, other proteins that show prion-like properties but lack infectivity (known as prionoids) can also gain new functions on conversion to a self-replicating conformation, suggesting that this process can also lead to a regulation of protein function in metazoans.

  • A multi-step pathway of conformational self-replication expands the range of phenotypes that each prion protein can specify and allows for dynamic transitions between forms.

  • The molecular basis of pathogenesis for the transmissible spongiform encephalopathies is not fully understood. Likewise, the relationship between the cause of disease and the normal function of the determinant PrP is an emerging concept. However, many aspects of prion biology can be explained by changes in the efficiency of conformational self-replication, suggesting that an unknown transient biochemical species mediates the biological effects of this alternative protein-folding pathway.

Abstract

Prions are unusual proteinaceous infectious agents that are typically associated with a class of fatal degenerative diseases of the mammalian brain. However, the discovery of fungal prions, which are not associated with disease, suggests that we must now consider the effect of these factors on basic cellular physiology in a different light. Fungal prions are epigenetic determinants that can alter a range of cellular processes, including metabolism and gene expression pathways, and these changes can lead to a range of prion-associated phenotypes. The mechanistic similarities between prion propagation in mammals and fungi suggest that prions are not a biological anomaly but instead could be a newly appreciated and perhaps ubiquitous regulatory mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular consequences of translational fidelity changes mediated by [PSI+].
Figure 2: Fungal prions and their associated phenotypes.
Figure 3: How prions are propagated in the cell.
Figure 4: Prion mixtures, strain competition and the species barrier.

Similar content being viewed by others

References

  1. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Griffith, J. S. Self-replication and scrapie. Nature 215, 1043–1044 (1967).

    CAS  PubMed  Google Scholar 

  4. Wickner, R. B., Edskes, H. K., Shewmaker, F. & Nakayashiki, T. Prions of fungi: inherited structures and biological roles. Nature Rev. Microbiol. 5, 611–618 (2007).

    CAS  Google Scholar 

  5. Collinge, J. & Clarke, A. R. A general model of prion strains and their pathogenicity. Science 318, 930–936 (2007).

    CAS  PubMed  Google Scholar 

  6. Nemecek, J., Nakayashiki, T. & Wickner, R. B. A prion of yeast metacaspase homolog (Mca1p) detected by a genetic screen. Proc. Natl Acad. Sci. USA 106, 1892–1896 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wickner, R. B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569 (1994). The first experimental proof that a non-Mendelian element (in this case [ URE3 ]) in yeast can be explained by the 'protein only' or prion hypothesis.

    CAS  PubMed  Google Scholar 

  8. Michelitsch, M. D. & Weissman, J. S. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc. Natl Acad. Sci. USA 97, 11910–11915 (2000).

    Google Scholar 

  9. Alberti, S., Halfmann, R., King, O., Kapila, A. & Lindquist, S. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137, 146–158 (2009). A comprehensive study that reveals the diversity of potential prions in yeast and provides direct experimental proof for [ MOT3+], the prion form of the transcriptional co-repressor Mot3.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cox, B. Ψ, a cytoplasmic suppressor of super-suppression in yeast. Heredity 20, 505–521 (1965).

    Google Scholar 

  11. Culbertson, M. R., Charnas, L., Johnson, M. T. & Fink, G. R. Frameshifts and frameshift suppressors in Saccharomyces cerevisiae. Genetics 86, 745–764 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Patino, M. M., Liu, J. J., Glover, J. R. & Lindquist, S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273, 622–626 (1996).

    CAS  PubMed  Google Scholar 

  13. Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N. & Ter-Avanesyan, M. D. Propagation of the yeast prion-like [PSI+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J. 15, 3127–3134 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, B., Newnam, G. P. & Chernoff, Y. O. Prion species barrier between the closely related yeast proteins is detected despite coaggregation. Proc. Natl Acad. Sci. USA 104, 2791–2796 (2007). Using the [ PSI+] yeast prion system, the authors show that the barrier to interspecies prion transmission occurs at the point of conformational replication rather than by the binding of two different conformers.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Eaglestone, S. S., Cox, B. S. & Tuite, M. F. Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J. 18, 1974–1981 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. True, H. L., Berlin, I. & Lindquist, S. L. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 431, 184–187 (2004).

    CAS  PubMed  Google Scholar 

  17. True, H. L. & Lindquist, S. L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477–483 (2000). An analysis of a range of phenotypes that differentiate [ PSI+] from [ psi] cells. The authors propose that the [ PSI+] prion provides the means to uncover hidden genetic variation and produce new heritable phenotypes.

  18. Williams, I., Richardson, J., Starkey, A. & Stansfield, I. Genome-wide prediction of stop codon readthrough during translation in the yeast Saccharomyces cerevisiae. Nucleic Acids Res. 32, 6605–6616 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilson, M. A., Meaux, S., Parker, R. & van Hoof, A. Genetic interactions between [PSI+] and nonstop mRNA decay affect phenotypic variation. Proc. Natl Acad. Sci. USA 102, 10244–10249 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Palanimurugan, R., Scheel, H., Hofmann, K. & Dohmen, R. J. Polyamines regulate their synthesis by inducing expression and blocking degradation of ODC antizyme. EMBO J. 23, 4857–4867 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Namy, O. et al. Epigenetic control of polyamines by the prion [PSI+]. Nature Cell Biol. 10, 1069–1075 (2008). The authors show that [ PSI+] enhances the synthesis of antizyme, a regulator of polyamine synthesis, through a −1 frameshift event. This in turn leads to the modulation of the levels of polyamines in the yeast cell that can lead to a range of phenotypes, including some of those described in reference 17.

    CAS  PubMed  Google Scholar 

  22. Namy, O., Duchateau-Nguyen, G. & Rousset, J. P. Translational readthrough of the PDE2 stop codon modulates cAMP levels in Saccharomyces cerevisiae. Mol. Microbiol. 43, 641–652 (2002).

    CAS  PubMed  Google Scholar 

  23. Du, Z., Park, K. W., Yu, H., Fan, Q. & Li, L. Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nature Genet. 40, 460–465 (2008). This article describes a yeast prion that is formed by a key chromatin remodelling factor and thus reveals a possible link between global transcriptional regulation and the ability of Swi1 to undergo conformational conversion.

    CAS  PubMed  Google Scholar 

  24. Patel, B. K., Gavin-Smyth, J. & Liebman, S. W. The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion. Nature Cell Biol. 11, 344–349 (2009).

    CAS  PubMed  Google Scholar 

  25. Hongay, C., Jia, N., Bard, M. & Winston, F. Mot3 is a transcriptional repressor of ergosterol biosynthetic genes and is required for normal vacuolar function in Saccharomyces cerevisiae. EMBO J. 21, 4114–4124 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lempiäinen, H. & Shore, D. Growth control and ribosome biogenesis. Curr. Opin. Cell Biol. 21, 855–863 (2009).

    PubMed  Google Scholar 

  27. Courchesne, W. E. & Magasanik, B. Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J. Bacteriol. 170, 708–713 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cunningham, T. S., Andhare, R. & Cooper, T. G. Nitrogen catabolite repression of DAL80 expression depends on the relative levels of Gat1p and Ure2p production in Saccharomyces cerevisiae. J. Biol. Chem. 275, 14408–14414 (2000).

    CAS  PubMed  Google Scholar 

  29. Rai, R., Tate, J. J. & Cooper, T. G. Ure2, a prion precursor with homology to glutathione S-transferase, protects Saccharomyces cerevisiae cells from heavy metal ion and oxidant toxicity. J. Biol. Chem. 278, 12826–12833 (2003).

    CAS  PubMed  Google Scholar 

  30. Rogoza, T. et al. Non-Mendelian determinant [ISP+] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1. Proc. Natl Acad. Sci. USA 107, 10573–10577 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Saupe, S. J. A short history of small s: a prion of the fungus Podospora anserina. Prion 1, 110–115 (2007).

    PubMed  PubMed Central  Google Scholar 

  32. Coustou, V., Deleu, C., Saupe, S. & Begueret, J. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc. Natl Acad. Sci. USA 94, 9773–9778 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Paoletti, M. & Saupe, S. J. Fungal incompatibility: evolutionary origin in pathogen defense? Bioessays 31, 1201–1210 (2009).

    CAS  PubMed  Google Scholar 

  34. Greenwald, J. et al. The mechanism of prion inhibition by HET-S. Mol. Cell 38, 889–899 (2010). The authors show that the inhibition of the fibrillization of P. anserina HET-s by the closely related HET-S protein is not encoded by the structural differences per se . Instead, it reflects an effect on the stability and oligomerization properties of the mixed aggregates formed between the two proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sondheimer, N. & Lindquist, S. Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cell 5, 163–172 (2000).

    CAS  PubMed  Google Scholar 

  36. Derkatch, I. L., Bradley, M. E., Hong, J. Y. & Liebman, S. W. Prions affect the appearance of other prions: the story of [PIN+]. Cell 106, 171–182 (2001).

    CAS  PubMed  Google Scholar 

  37. Osherovich, L. Z. & Weissman, J. S. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI+] prion. Cell 106, 183–194 (2001).

    CAS  PubMed  Google Scholar 

  38. Resende, C. G., Outeiro, T. F., Sands, L., Lindquist, S. & Tuite, M. F. Prion protein gene polymorphisms in Saccharomyces cerevisiae. Mol. Microbiol. 49, 1005–1017 (2003).

    CAS  PubMed  Google Scholar 

  39. Nakayashiki, T., Kurtzman, C. P., Edskes, H. K. & Wickner, R. B. Yeast prions [URE3] and [PSI+] are diseases. Proc. Natl Acad. Sci. USA 102, 10575–10580 (2005). This paper opens up the debate about the impact of yeast prions on the host and argues that because neither the [ URE3 ] nor [ PSI+] prions are present in 70 different wild strains, they must have a negative effect on the host.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Derkatch, I. L. et al. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Proc. Natl Acad. Sci. USA 101, 12934–12939 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Derkatch, I. L. et al. Dependence and independence of [PSI+] and [PIN+]: a two-prion system in yeast? EMBO J. 19, 1942–1952 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Dalstra, H. J., Swart, K., Debets, A. J., Saupe, S. J. & Hoekstra, R. F. Sexual transmission of the [Het-S] prion leads to meiotic drive in Podospora anserina. Proc. Natl Acad. Sci. USA 100, 6616–6621 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ter-Avanesyan, M. D. et al. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol. Microbiol. 7, 683–692 (1993).

    CAS  PubMed  Google Scholar 

  44. Griswold, C. K. & Masel, J. Complex adaptations can drive the evolution of the capacitor [PSI], even with realistic rates of yeast sex. PLoS Genet. 5, e1000517 (2009).

    PubMed  PubMed Central  Google Scholar 

  45. Joseph, S. B. & Kirkpatrick, M. Effects of the [PSI+] prion on rates of adaptation in yeast. J. Evol. Biol. 21, 773–780 (2008).

    CAS  PubMed  Google Scholar 

  46. Brundin, P., Melki, R. & Kopito, R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nature Rev. Mol. Cell Biol. 11, 301–307 (2010).

    CAS  Google Scholar 

  47. Meyer-Luehmann, M. et al. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science 313, 1781–1784 (2006).

    CAS  PubMed  Google Scholar 

  48. Ren, P. H. et al. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nature Cell Biol. 11, 219–225 (2009).

    CAS  PubMed  Google Scholar 

  49. Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nature Med. 14, 501–503 (2008).

    CAS  PubMed  Google Scholar 

  50. Aguzzi, A. Cell biology: Beyond the prion principle. Nature 459, 924–925 (2009).

    CAS  PubMed  Google Scholar 

  51. Glabe, C. G. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol. Aging 27, 570–575 (2006).

    CAS  PubMed  Google Scholar 

  52. Barnhart, M. M. & Chapman, M. R. Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Si, K., Choi, Y. B., White-Grindley, E., Majumdar, A. & Kandel, E. R. Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 140, 421–435 (2010).

    CAS  PubMed  Google Scholar 

  54. Fowler, D. M. et al. Functional amyloid formation within mammalian tissue. PLoS Biol. 4, e6 (2006).

    PubMed  Google Scholar 

  55. Berson, J. F. et al. Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J. Cell Biol. 161, 521–533 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Maji, S. K. et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325, 328–332 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Aguzzi, A., Baumann, F. & Bremer, J. The prion's elusive reason for being. Annu. Rev. Neurosci. 31, 439–477 (2008).

    CAS  PubMed  Google Scholar 

  58. Mallucci, G. R. et al. Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron 53, 325–335 (2007).

    CAS  PubMed  Google Scholar 

  59. White, M. D. et al. Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc. Natl Acad. Sci. USA 105, 10238–10243 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Steele, A. D., Lindquist, S. & Aguzzi, A. The prion protein knockout mouse: a phenotype under challenge. Prion 1, 83–93 (2007).

    PubMed  PubMed Central  Google Scholar 

  61. Isaacs, J. D., Jackson, G. S. & Altmann, D. M. The role of the cellular prion protein in the immune system. Clin. Exp. Immunol. 146, 1–8 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wilson, D. A. & Nixon, R. A. Sniffing out a function for prion proteins. Nature Neurosci. 12, 7–8 (2009).

    CAS  PubMed  Google Scholar 

  63. Malaga-Trillo, E. et al. Regulation of embryonic cell adhesion by the prion protein. PLoS Biol. 7, e55 (2009).

    PubMed  Google Scholar 

  64. Bremer, J. et al. Axonal prion protein is required for peripheral myelin maintenance. Nature Neurosci. 13, 310–318 (2010).

    CAS  PubMed  Google Scholar 

  65. Westergard, L., Christensen, H. M. & Harris, D. A. The cellular prion protein (PrPC): its physiological function and role in disease. Biochim. Biophys. Acta 1772, 629–644 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Shmerling, D. et al. Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93, 203–214 (1998).

    CAS  PubMed  Google Scholar 

  67. Baumann, F. et al. Lethal recessive myelin toxicity of prion protein lacking its central domain. EMBO J. 26, 538–547 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mallucci, G. et al. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302, 871–874 (2003).

    CAS  PubMed  Google Scholar 

  69. Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343 (1996).

    CAS  PubMed  Google Scholar 

  70. Chesebro, B. et al. Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308, 1435–1439 (2005).

    CAS  PubMed  Google Scholar 

  71. Nicoll, A. J. & Collinge, J. Preventing prion pathogenicity by targeting the cellular prion protein. Infect. Disord. Drug Targets 9, 48–57 (2009).

    CAS  PubMed  Google Scholar 

  72. Radford, H. E. & Mallucci, G. R. The role of GPI-anchored PRPC in mediating the neurotoxic effect of scrapie prions in neurons. Curr. Issues Mol. Biol. 12, 119–128 (2009).

    PubMed  Google Scholar 

  73. Büeler, H. et al. High prion and PrPSc levels but delayed onset of disease in scrapie-inoculated mice heterozygous for a disrupted PrP gene. Mol. Med. 1, 19–30 (1994).

    PubMed  Google Scholar 

  74. Masel, J., Jansen, V. A. & Nowak, M. A. Quantifying the kinetic parameters of prion replication. Biophys. Chem. 77, 139–152 (1999).

    CAS  PubMed  Google Scholar 

  75. Haslberger, T., Bukau, B. & Mogk, A. Towards a unifying mechanism for ClpB/Hsp104-mediated protein disaggregation and prion propagation. Biochem. Cell Biol. 88, 63–75 (2010).

    CAS  PubMed  Google Scholar 

  76. Jones, G. W. & Tuite, M. F. Chaperoning prions: the cellular machinery for propagating an infectious protein? Bioessays 27, 823–832 (2005).

    CAS  PubMed  Google Scholar 

  77. Prusiner, S. et al. Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63, 673–686 (1990).

    CAS  PubMed  Google Scholar 

  78. Manson, J. C., Clarke, A. R., McBride, P. A., McConnell, I. & Hope, J. PrP gene dosage determines the timing but not the final intensity or distribution of lesions in scrapie pathology. Neurodegeneration 3, 331–340 (1994).

    CAS  PubMed  Google Scholar 

  79. Laurent, M. Bistability and the species barrier in prion diseases: stepping across the threshold or not. Biophys. Chem. 72, 211–222 (1998).

    CAS  PubMed  Google Scholar 

  80. Sindi, S. S. & Serio, T. R. Prion dynamics and the quest for the genetic determinant in protein-only inheritance. Curr. Opin. Microbiol. 12, 623–630 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Legname, G. et al. Continuum of prion protein structures enciphers a multitude of prion isolate-specified phenotypes. Proc. Natl Acad. Sci. USA 103, 19105–19110 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tanaka, M., Collins, S. R., Toyama, B. H. & Weissman, J. S. The physical basis of how prion conformations determine strain phenotypes. Nature 442, 585–589 (2006).

    CAS  PubMed  Google Scholar 

  83. Kimberlin, R. H. & Walker, C. A. Evidence that the transmission of one source of scrapie agent to hamsters involves separation of agent strains from a mixture. J. Gen. Virol. 39, 487–496 (1978).

    CAS  PubMed  Google Scholar 

  84. Marsh, R. F. & Hanson, R. P. in Slow Transmissible Diseases of the Nervous System (eds Prusiner, S. B. & Hadlow, W. J.) 451–460 (Academy Press, New York, 1979).

    Google Scholar 

  85. Dickinson, A. G. in Slow Virus Diseases of Animals and Man (ed. Kimberlin, R. H.) 209–241 (North-Holland Publishing Company, Amsterdam, 1976).

    Google Scholar 

  86. Derkatch, I. L., Bradley, M. E., Zhou, P. & Liebman, S. W. The PNM2 mutation in the prion protein domain of SUP35 has distinct effects on different variants of the [PSI+] prion in yeast. Curr. Genet. 35, 59–67 (1999).

    CAS  PubMed  Google Scholar 

  87. Ghaemmaghami, S. et al. Continuous quinacrine treatment results in the formation of drug-resistant prions. PLoS Pathog. 5, e1000673 (2009). Quinacrine treatment induces the loss of some prion strains while promoting the amplification of others.

    PubMed  PubMed Central  Google Scholar 

  88. Manuelidis, L., Fritch, W. & Xi, Y. G. Evolution of a strain of CJD that induces BSE-like plaques. Science 277, 94–98 (1997).

    CAS  PubMed  Google Scholar 

  89. Li, J., Browning, S., Mahal, S. P., Oelschlegel, A. M. & Weissmann, C. Darwinian evolution of prions in cell culture. Science 327, 869–872 (2010). The frequency of prion strain mutations can be influenced by selective pressures, including host identity and exposure to chemical treatments.

    CAS  PubMed  Google Scholar 

  90. Bruce, M. E. Scrapie strain variation and mutation. Br. Med. Bull. 49, 822–838 (1993).

    CAS  PubMed  Google Scholar 

  91. Angers, R. C. et al. Prion strain mutation determined by prion protein conformational compatibility and primary structure. Science 328, 1154–1158 (2010). The frequency of prion strain mutation in chronic wasting disease has been linked to a change in PrP sequence that does not seem to alter the conformation of the prion form.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bessen, R. A. & Marsh, R. F. Identification of two biologically distinct strains of transmissible mink encephalopathy in hamsters. J. Gen. Virol. 73, 329–334 (1992).

    PubMed  Google Scholar 

  93. Dickinson, A. G. & Outram, G. W. in Virus Nonconventionnels et Affections du Systeme Nerveux Central (eds Court, L. A. & Cathala, F.) 3–16 (Masson, Paris, 1983).

    Google Scholar 

  94. Parchi, P. et al. Incidence and spectrum of sporadic Creutzfeldt-Jakob disease variants with mixed phenotype and co-occurrence of PrPSc types: an updated classification. Acta Neuropathol. 118, 659–671 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Cali, I. et al. Co-existence of scrapie prion protein types 1 and 2 in sporadic Creutzfeldt-Jakob disease: its effect on the phenotype and prion-type characteristics. Brain 132, 2643–2658 (2009).

    PubMed  PubMed Central  Google Scholar 

  96. Bruce, M., Fraser, H., McBride, P., Scott, J. & Dickinson, A. in Prion Diseases of Humans and Animals (eds Prusiner, S., Collinge, J., Powell, J. & Anderton, B.) 497–508 (Ellis Horwood, New York, 1992).

    Google Scholar 

  97. Bartz, J. C., Bessen, R. A., McKenzie, D., Marsh, R. F. & Aiken, J. M. Adaptation and selection of prion protein strain conformations following interspecies transmission of transmissible mink encephalopathy. J. Virol. 74, 5542–5547 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Dickinson, A. G. et al. Extraneural competition between different scrapie agents leading to loss of infectivity. Nature 253, 556 (1975).

    CAS  PubMed  Google Scholar 

  99. Dickinson, A. G., Fraser, H., Meikle, V. M. & Outram, G. W. Competition between different scrapie agents in mice. Nature New Biol. 237, 244–245 (1972).

    CAS  PubMed  Google Scholar 

  100. Dickinson, A. G. & Outram, G. W. in Slow Transmissible Diseases of The Nervous System (eds Prusiner, S. B. & Hadlow, W. J.) 13–31 (Academic Press, New York, 1979).

    Google Scholar 

  101. Shikiya, R. A., Ayers, J. I., Schutt, C. R., Kincaid, A. E. & Bartz, J. C. Coinfecting prion strains compete for a limiting cellular resource. J. Virol. 84, 5706–5714 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Bradley, M. E., Edskes, H. K., Hong, J. Y., Wickner, R. B. & Liebman, S. W. Interactions among prions and prion “strains” in yeast. Proc. Natl Acad. Sci. USA 99 (Suppl. 4), 16392–16399 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Morales, R., Abid, K. & Soto, C. The prion strain phenomenon: molecular basis and unprecedented features. Biochim. Biophys. Acta 1772, 681–691 (2007).

    CAS  PubMed  Google Scholar 

  104. Goldfarb, L. et al. Patients wth Creutzfeldt-Jakob disease and kuru lack the mutation in the PRIP gene found in Gerstmann-Sträussler syndrome, but they show a different double-allele mutation in the same gene. Am. J. Hum. Genet. 45, A189 (1989).

    Google Scholar 

  105. Owen, F., Poulter, M., Collinge, J. & Crow, T. J. Codon 129 changes in the prion protein gene in Caucasians. Am. J. Hum. Genet. 46, 1215–1216 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Liemann, S. & Glockshuber, R. Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein. Biochemistry 38, 3258–3267 (1999).

    CAS  PubMed  Google Scholar 

  107. Hosszu, L. L. et al. The residue 129 polymorphism in human prion protein does not confer susceptibility to Creutzfeldt-Jakob disease by altering the structure or global stability of PrPC. J. Biol. Chem. 279, 28515–28521 (2004).

    CAS  PubMed  Google Scholar 

  108. Apetri, A. C., Vanik, D. L. & Surewicz, W. K. Polymorphism at residue 129 modulates the conformational conversion of the D178N variant of human prion protein 90–231. Biochemistry 44, 15880–15888 (2005).

    CAS  PubMed  Google Scholar 

  109. Baskakov, I. V., Legname, G., Baldwin, M. A., Prusiner, S. B. & Cohen, F. E. Pathway complexity of prion protein assembly into amyloid. J. Biol. Chem. 277, 21140–21148 (2002).

    CAS  PubMed  Google Scholar 

  110. Come, J. & Lansbury, P. Predisposition of prion protein homozygotes to Creutzfeldt-Jakob disease can be explained by a nucleation-dependent polymerization mechanism. J. Am. Chem. Soc. 116, 4109–4110 (1994).

    CAS  Google Scholar 

  111. Tahiri-Alaoui, A., Gill, A. C., Disterer, P. & James, W. Methionine 129 variant of human prion protein oligomerizes more rapidly than the valine 129 variant: implications for disease susceptibility to Creutzfeldt-Jakob disease. J. Biol. Chem. 279, 31390–31397 (2004).

    CAS  PubMed  Google Scholar 

  112. Tahiri-Alaoui, A., Sim, V. L., Caughey, B. & James, W. Molecular heterosis of prion protein β-oligomers. A potential mechanism of human resistance to disease. J. Biol. Chem. 281, 34171–34178 (2006).

    CAS  PubMed  Google Scholar 

  113. Jeong, B. H. et al. Association of sporadic Creutzfeldt-Jakob disease with homozygous genotypes at PRNP codons 129 and 219 in the Korean population. Neurogenetics 6, 229–232 (2005).

    CAS  PubMed  Google Scholar 

  114. Westaway, D. et al. Distinct prion proteins in short and long scrapie incubation period mice. Cell 51, 651–662 (1987).

    CAS  PubMed  Google Scholar 

  115. Dickinson, A. G., Meikle, V. M. & Fraser, H. Identification of a gene which controls the incubation period of some strains of scrapie agent in mice. J. Comp. Pathol. 78, 293–299 (1968).

    CAS  PubMed  Google Scholar 

  116. Foster, J. D. & Dickinson, A. G. The unusual properties of CH1641, a sheep-passaged isolate of scrapie. Vet. Rec. 123, 5–8 (1988).

    CAS  PubMed  Google Scholar 

  117. Goldmann, W., Hunter, N., Smith, G., Foster, J. & Hope, J. PrP genotype and agent effects in scrapie: change in allelic interaction with different isolates of agent in sheep, a natural host of scrapie. J. Gen. Virol. 75, 989–995 (1994).

    CAS  PubMed  Google Scholar 

  118. Gordon, W. ARS91–53: Report of Scrapie Seminar, 53–68 (US Department of Agriculture, 1964).

  119. Shibuya, S., Higuchi, J., Shin, R. W., Tateishi, J. & Kitamoto, T. Codon 219 Lys allele of PRNP is not found in sporadic Creutzfeldt-Jakob disease. Ann. Neurol. 43, 826–828 (1998).

    CAS  PubMed  Google Scholar 

  120. Westaway, D. et al. Homozygosity for prion protein alleles encoding glutamine-171 renders sheep susceptible to natural scrapie. Genes Dev. 8, 959–969 (1994).

    CAS  PubMed  Google Scholar 

  121. Kaneko, K. et al. Evidence for protein X binding to a discontinuous epitope on the cellular prion protein during scrapie prion propagation. Proc. Natl Acad. Sci. USA 94, 10069–10074 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Perrier, V. et al. Dominant-negative inhibition of prion replication in transgenic mice. Proc. Natl Acad. Sci. USA 99, 13079–13084 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Geoghegan, J. C,. Miller, M. B,. Kwak, A. H,. Harris, B. T. & Supattapone, S. Trans- dominant inhibition of prion propagation in vitro is not mediated by an accessory cofactor. PLoS Pathog. 5, e1000535 (2009). Using PrP purified from mammalian cells and the protein misfolding cyclic amplification approach, the authors show that dominant-negative inhibition of prion propagation by a PrP mutant can be recapitulated in vitro in the absence of trans factors.

    PubMed  PubMed Central  Google Scholar 

  124. Lee, C. I., Yang, Q., Perrier, V. & Baskakov, I. V. The dominant-negative effect of the Q218K variant of the prion protein does not require protein X. Protein Sci. 16, 2166–2173 (2007). Using recombinant protein purified from bacteria, the authors show that the Gln218Lys variant of PrP interferes with amyloid formation by wild-type PrP in vitro , and their studies suggest that the inhibition occurs not by an effect on binding but rather by a effect on conformational conversion.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Masel, J. & Jansen, V. A. Designing drugs to stop the formation of prion aggregates and other amyloids. Biophys. Chem. 88, 247–259 (2000).

    Google Scholar 

  126. DePace, A. H., Santoso, A., Hillner, P. & Weissman, J. S. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93, 1241–1252 (1998).

    CAS  PubMed  Google Scholar 

  127. Young, C. & Cox, B. Extrachromosomal elements in a super-suppression system of yeast I. A nuclear gene controlling the inheritance of the extrachromosomal elements. Heredity 26, 413–422 (1971).

    Google Scholar 

  128. Doel, S. M., McCready, S. J., Nierras, C. R. & Cox, B. S. The dominant PNM2 mutation which eliminates the Ψ factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137, 659–670 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. King, C. Y. Supporting the structural basis of prion strains: induction and identification of [PSI] variants. J. Mol. Biol. 307, 1247–1260 (2001).

    CAS  PubMed  Google Scholar 

  130. Kochneva-Pervukhova, N. V. et al. Mechanism of inhibition of Ψ+ prion determinant propagation by a mutation of the N-terminus of the yeast Sup35 protein. EMBO J. 17, 5805–5810 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Osherovich, L. Z., Cox, B. S., Tuite, M. F. & Weissman, J. S. Dissection and design of yeast prions. PLoS Biol. 2, e86 (2004).

    PubMed  PubMed Central  Google Scholar 

  132. Zlotnik, I. & Rennie, J. C. Experimental transmission of mouse passaged scrapie to goats, sheep, rats and hamsters. J. Comp. Pathol. 75, 147–157 (1965).

    CAS  PubMed  Google Scholar 

  133. Pattison, I. in NINDB Monograph, No.2: Slow, Latent, and Temperate Virus Infections (eds Gajdusek D. C., Gibbs C. J. Jr & Alpers M. P.)249–257 (US National Institutes of Health, Bethesda, Maryland, 1965).

    Google Scholar 

  134. Collinge, J., Sidle, K. C., Meads, J., Ironside, J. & Hill, A. F. Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD. Nature 383, 685–690 (1996).

    CAS  PubMed  Google Scholar 

  135. Bruce, M. E. et al. Transmissions to mice indicate that 'new variant' CJD is caused by the BSE agent. Nature 389, 498–501 (1997).

    CAS  PubMed  Google Scholar 

  136. Marsh, R. F., Burger, D., Eckroade, R., Zu Rhein, G. M. & Hanson, R. P. A preliminary report on the experimental host range of the transmissible mink encephalopathy agent. J. Infect. Dis. 120, 713–719 (1969).

    CAS  PubMed  Google Scholar 

  137. Hill, A. F. et al. Species-barrier-independent prion replication in apparently resistant species. Proc. Natl Acad. Sci. USA 97, 10248–10253 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Race, R. & Chesebro, B. Scrapie infectivity found in resistant species. Nature 392, 770 (1998).

    CAS  PubMed  Google Scholar 

  139. Dickinson, A. G., Fraser, H. & Outram, G. W. Scrapie incubation time can exceed natural lifespan. Nature 256, 732–733 (1975).

    CAS  PubMed  Google Scholar 

  140. Windl, O. et al. Breaking an absolute species barrier: transgenic mice expressing the mink PrP gene are susceptible to transmissible mink encephalopathy. J. Virol. 79, 14971–14975 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Sigurdson, C. J. et al. A molecular switch controls interspecies prion disease transmission in mice. J. Clin. Invest. 120, 2590–2599 (2010). The authors show that the barrier to interspecies prion transmission may be the structure of a loop in the PrP protein.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Chien, P., Weissman, J. S. & DePace, A. H. Emerging principles of conformation-based prion inheritance. Annu. Rev. Biochem. 73, 617–656 (2004).

    CAS  PubMed  Google Scholar 

  143. Sawaya, M. R. et al. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447, 453–457 (2007).

    CAS  PubMed  Google Scholar 

  144. Vanik, D. L., Surewicz, K. A. & Surewicz, W. K. Molecular basis of barriers for interspecies transmissibility of mammalian prions. Mol. Cell 14, 139–145 (2004).

    CAS  PubMed  Google Scholar 

  145. Nakayashiki, T., Ebihara, K., Bannai, H. & Nakamura, Y. Yeast [PSI+] “prions” that are crosstransmissible and susceptible beyond a species barrier through a quasi-prion state. Mol. Cell 7, 1121–1130 (2001).

    CAS  PubMed  Google Scholar 

  146. Chen, B. et al. Genetic and epigenetic control of the efficiency and fidelity of cross-species prion transmission. Mol. Microbiol. 76, 1483–1499 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Edskes, H. K., McCann, L. M., Hebert, A. M. & Wickner, R. B. Prion variants and species barriers among Saccharomyces Ure2 proteins. Genetics 181, 1159–1167 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Kadnar, M. L., Articov, G. & Derkatch, I. L. Distinct type of transmission barrier revealed by study of multiple prion determinants of Rnq1. PLoS Genet. 6, e1000824 (2010). Despite the absence of amino acid substitutions, the authors uncover a prion transmission barrier between fragments of the Rnq1 prion [ RNQ+] of S. cerevisiae , suggesting that protein conformation is the key determinant in prion compatibility.

    PubMed  PubMed Central  Google Scholar 

  149. Jones, E. M. & Surewicz, W. K. Fibril conformation as the basis of species- and strain-dependent seeding specificity of mammalian prion amyloids. Cell 121, 63–72 (2005).

    CAS  PubMed  Google Scholar 

  150. Tessier, P. M. & Lindquist, S. Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]. Nature Struct. Mol. Biol. 16, 598–605 (2009).

    CAS  Google Scholar 

  151. Pattison, I. H. & Jones, K. M. Modification of a strain of mouse-adapted scrapie by passage through rats. Res. Vet. Sci. 9, 408–410 (1968).

    CAS  PubMed  Google Scholar 

  152. Kimberlin, R. H., Walker, C. A. & Fraser, H. The genomic identity of different strains of mouse scrapie is expressed in hamsters and preserved on reisolation in mice. J. Gen. Virol. 70, 2017–2025 (1989).

    PubMed  Google Scholar 

  153. Kimberlin, R. H., Cole, S. & Walker, C. A. Temporary and permanent modifications to a single strain of mouse scrapie on transmission to rats and hamsters. J. Gen. Virol. 68, 1875–1881 (1987).

    PubMed  Google Scholar 

  154. Makarava, N., Ostapchenko, V. G., Savtchenko, R. & Baskakov, I. V. Conformational switching within individual amyloid fibrils. J. Biol. Chem. 284, 14386–14395 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Si, K., Lindquist, S. & Kandel, E. R. A neuronal isoform of the Aplysia CPEB has prion-like properties. Cell 115, 879–891 (2003). By using expression in yeast, the authors provide the first evidence of the existence of a prion-based mechanism in the sensory neurons of Aplysia spp. (sea slug). In this case the translational regulator cytoplasmic polyadenylation element binding protein (CPEB) undergoes a conformational switch to a self-perpetuating amyloid that potentially affects synpatic efficiency and thus long-term facilitation.

    CAS  PubMed  Google Scholar 

  156. Bernardi, G. Lessons from a small, dispensable genome: the mitochondrial genome of yeast. Gene 354, 189–200 (2005).

    CAS  PubMed  Google Scholar 

  157. Ross, E. D., Edskes, H. K., Terry, M. J. & Wickner, R. B. Primary sequence independence for prion formation. Proc. Natl Acad. Sci. USA 102, 12825–12830 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Taneja, V., Maddelein, M. L., Talarek, N., Saupe, S. J. & Liebman, S. W. A non-Q/N-rich prion domain of a foreign prion, [Het-s], can propagate as a prion in yeast. Mol. Cell 27, 67–77 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research on yeast prions carried out in the Tuite laboratory is supported by funding from the UK Biotechnology and Biological Sciences Research Council and The Wellcome Trust, UK. Work in the Serio laboratory is supported by the US National Institutes of Health National Institute of General Medical Sciences (NIGMS) and the National Science Foundation (ADVANCE) USA. The authors thank members of the Tuite and Serio laboratories for critical reading of this manuscript before submission. The authors also thank S. Saupe, S. Liebman, C. Cullin and K. Stojanovski for providing images used in figure 2. The authors apologize that owing to space constraints they were unable to directly cite all primary studies that have contributed to our understanding of prion biology and its physiological effects.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Mick F. Tuite's homepage

Tricia R. Serio's homepage

Glossary

Epigenetic

A change in inherited phenotype resulting from a molecular event other than a change in the DNA sequence of the organism's genome: for example, DNA methylation or chromatin remodelling.

Protein conformation

The stable three-dimensional shape taken up by a polypeptide chain that determines the alternative functions of the protein.

Prion

A structurally altered form of a protein that can impose that form on a previously correctly folded form of the same protein and hence propagate the prion form by inheritance (yeast prions) or in an infectious manner (mammalian prion protein (PrP)).

Conformer

One of many different stable tertiary structures that can be taken up by a single polypeptide chain.

tRNA-mediated nonsense suppression

The translation of a termination codon by a tRNA with a mutation in its anticodon. This can result in partial restoration of function to the encoded protein when the codon is located within the open reading frame (a nonsense mutation).

+1/−1 ribosomal frameshifting

A net shift in the translation of an open reading frame by one base, either in the 3′ direction (+1) or 5′ direction (−1), that is directed by a specific signal in the mRNA sequence.

Vegetative incompatibility

Death of a multinucleate heterokaryon arising from the fusion of two different strains of a fungus, thereby preventing the transfer of cytoplasmic components from one strain to another.

Heterokaryon

Co-existence of two or more genetically different nuclei in a common cytoplasm.

De novo prion formation

The establishment of the prion form of a protein without the benefit of acquired prion seeds (propagons) or mutation; that is, spontaneous appearance of the prion form.

Prionoid

A protein that shows prion-like conformational self-replication activity but that lacks infectivity.

Melanosome

An organelle within melanocytes in which melanin is generated and stored.

Propagon

A conformation-replicating physical entity that is transmitted from mother to daughter cells and is required to maintain the [PRION+] phenotype. 'Seed' is a common synonym.

Strain 'mutation' or adaptation

The conversion of one prion conformer to another, either spontaneously or in response to a new environment.

Superinfection

Sequential but temporally spaced inoculations of a host with more than one strain of an infectious agent.

Overdominance

A heterozygous phenotype that is outside of the range of phenotypes for either homozygous state.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuite, M., Serio, T. The prion hypothesis: from biological anomaly to basic regulatory mechanism. Nat Rev Mol Cell Biol 11, 823–833 (2010). https://doi.org/10.1038/nrm3007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3007

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing