Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prion-like properties of the mutant huntingtin protein in living organisms: the evidence and the relevance

Abstract

If theories postulating that pathological proteins associated with neurodegenerative disorders behave similarly to prions were initially viewed with reluctance, it is now well-accepted that this occurs in several disease contexts. Notably, it has been reported that protein misfolding and subsequent prion-like properties can actively participate in neurodegenerative disorders. While this has been demonstrated in multiple cellular and animal model systems related to Alzheimer’s and Parkinson’s diseases, the prion-like properties of the mutant huntingtin protein (mHTT), associated with Huntington’s disease (HD), have only recently been considered to play a role in this pathology, a concept our research group has contributed to extensively. In this review, we summarize the last few years of in vivo research in the field and speculate on the relationship between prion-like events and human HD. By interpreting observations primarily collected in in vivo models, our discussion will aim to discriminate which experimental factors contribute to the most efficient types of prion-like activities of mHTT and which routes of propagation may be more relevant to the human condition. A look back at nearly a decade of experimentation will inform future research and whether therapeutic strategies may emerge from this new knowledge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Routes of mHTT spread.
Fig. 2: Efficiency of mHTT spreading and seeding: key factors.
Fig. 3: The relevance of prion-like mHTT properties to clinical HD.

Similar content being viewed by others

References

  1. Venkatraman P, Wetzel R, Tanaka M, Nukina N, Goldberg AL. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol Cell. 2004;14:95–104.

    Article  CAS  PubMed  Google Scholar 

  2. Jana NR, Zemskov EA, Wang G, Nukina N. Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release. Hum Mol Genet. 2001;10:1049–59.

    Article  CAS  PubMed  Google Scholar 

  3. Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997;90:537–48.

    Article  CAS  PubMed  Google Scholar 

  4. Jeon I, Cicchetti F, Cisbani G, Lee S, Li E, Bae J, et al. Human-to-mouse prion-like propagation of mutant huntingtin protein. Acta Neuropathol. 2016;132:577–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wild EJ, Boggio R, Langbehn D, Robertson N, Haider S, Miller JR, et al. Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. J Clin Investig. 2015;125:1979–86.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cicchetti F, Lacroix S, Cisbani G, Vallieres N, Saint-Pierre M, St-Amour I, et al. Mutant huntingtin is present in neuronal grafts in Huntington disease patients. Ann Neurol. 2014;76:31–42.

    Article  CAS  PubMed  Google Scholar 

  7. Liu X, Valentine SJ, Plasencia MD, Trimpin S, Naylor S, Clemmer DE. Mapping the human plasma proteome by SCX-LC-IMS-MS. J Am Soc Mass Spectrom. 2007;18:1249–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gutekunst CA, Li SH, Yi H, Mulroy JS, Kuemmerle S, Jones R, et al. Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci. 1999;19:2522–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reiner A, Dragatsis I, Dietrich P. Genetics and neuropathology of Huntington’s disease. Int Rev Neurobiol. 2011;98:325–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vonsattel JP, Keller C, Del Pilar Amaya M. Neuropathology of Huntington’s disease. Handb Clin Neurol. 2008;89:599–618.

  11. Tang C, Feigin A. Monitoring Huntington’s disease progression through preclinical and early stages. Neurodegenerative Dis Manag. 2012;2:421–35.

    Article  Google Scholar 

  12. Maxan A, Mason S, Saint-Pierre M, Smith E, Ho A, Harrower T, et al. Outcome of cell suspension allografts in a patient with Huntington’s disease. Ann. Neurol. 2018;84:950–6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pecho-Vrieseling E, Rieker C, Fuchs S, Bleckmann D, Esposito MS, Botta P, et al. Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons. Nat Neurosci. 2014;17:1064–72.

    Article  CAS  PubMed  Google Scholar 

  14. Tan Z, Dai W, van Erp TG, Overman J, Demuro A, Digman MA, et al. Huntington’s disease cerebrospinal fluid seeds aggregation of mutant huntingtin. Mol Psychiatry. 2015;20:1286–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ast A, Buntru A, Schindler F, Hasenkopf R, Schulz A, Brusendorf L, et al. mHTT Seeding Activity: A Marker of Disease Progression and Neurotoxicity in Models of Huntington’s Disease. Mol Cell. 2018;71:675–88.

    Article  CAS  PubMed  Google Scholar 

  16. Imran M, Mahmood S. An overview of human prion diseases. Virol J. 2011;8:559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hewitt PE, Llewelyn CA, Mackenzie J, Will RG. Creutzfeldt-Jakob disease and blood transfusion: results of the UK Transfusion Medicine Epidemiological Review study. Vox Sang. 2006;91:221–30.

    Article  CAS  PubMed  Google Scholar 

  18. Ironside JW. Neuropathological findings in new variant CJD and experimental transmission of BSE. FEMS Immunol Med Microbiol. 1998;21:91–95.

    Article  CAS  PubMed  Google Scholar 

  19. Lang CJ, Heckmann JG, Neundorfer B. Creutzfeldt-Jakob disease via dural and corneal transplants. J Neurol Sci. 1998;160:128–39.

    Article  CAS  PubMed  Google Scholar 

  20. Bonda DJ, Manjila S, Mehndiratta P, Khan F, Miller BR, Onwuzulike K, et al. Human prion diseases: surgical lessons learned from iatrogenic prion transmission. Neurosurg Focus. 2016;41:E10.

    Article  PubMed  PubMed Central  Google Scholar 

  21. de Pedro Cuesta J, Ruiz Tovar M, Ward H, Calero M, Smith A, Verduras CA, et al. Sensitivity to biases of case-control studies on medical procedures, particularly surgery and blood transfusion, and risk of Creutzfeldt-Jakob disease. Neuroepidemiology. 2012;39:1–18.

    Article  PubMed  Google Scholar 

  22. Rieux M, Alpaugh M, Sciacca G, Saint-Pierre M, Masnata M, Denis HL, et al. Shedding a new light on Huntington’s disease: how blood can both propagate and ameliorate disease pathology. Mol Psychiatry. 2020:1-23.

  23. Bu XL, Xiang Y, Jin WS, Wang J, Shen LL, Huang ZL, et al. Blood-derived amyloid-beta protein induces Alzheimer’s disease pathologies. Mol Psychiatry. 2018;23:1948–56.

    Article  PubMed  Google Scholar 

  24. Sundaram SM, Garg P. The gut-brain axis in Parkinson’s disease: a focus on the transport of alpha-Synuclein. Mov Disord. 2019;34:1479.

    Article  PubMed  Google Scholar 

  25. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    Article  PubMed  Google Scholar 

  26. Brahic M, Bousset L, Bieri G, Melki R, Gitler AD. Axonal transport and secretion of fibrillar forms of alpha-synuclein, Abeta42 peptide and HTTExon 1. Acta Neuropathol. 2016;131:539–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Poudel GR, Harding IH, Egan GF, Georgiou-Karistianis N. Network spread determines severity of degeneration and disconnection in Huntington’s disease. Hum Brain Mapp. 2019;40:4192–201.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, et al. Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron. 2011;72:57–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Freundt EC, Maynard N, Clancy EK, Roy S, Bousset L, Sourigues Y, et al. Neuron-to-neuron transmission of alpha-synuclein fibrils through axonal transport. Ann Neurol. 2012;72:517–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu JW, Herman M, Liu L, Simoes S, Acker CM, Figueroa H, et al. Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J Biol Chem. 2013;288:1856–70.

    Article  CAS  PubMed  Google Scholar 

  31. Maxan A, Sciacca G, Alpaugh M, Tao Z, Breger L, Dehay B, et al. Use of adeno-associated virus-mediated delivery of mutant huntingtin to study the spreading capacity of the protein in mice and non-human primates. Neurobiol Dis. 2020;141:104951.

    Article  CAS  PubMed  Google Scholar 

  32. Babcock DT, Ganetzky B. Transcellular spreading of huntingtin aggregates in the Drosophila brain. Proc Natl Acad Sci USA. 2015;112:E5427–5433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Donnelly KM, DeLorenzo OR, Zaya AD, Pisano GE, Thu WM, Luo L, et al. Phagocytic glia are obligatory intermediates in transmission of mutant huntingtin aggregates across neuronal synapses. Elife. 2020;9:e58499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Masnata M, Sciacca G, Maxan A, Bousset L, Denis HL, Lauruol F, et al. Demonstration of prion-like properties of mutant huntingtin fibrils in both in vitro and in vivo paradigms. Acta Neuropathol. 2019;137:981–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pearce MMP, Spartz EJ, Hong W, Luo L, Kopito RR. Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the Drosophila brain. Nat Commun. 2015;6:6768.

    Article  CAS  PubMed  Google Scholar 

  36. Gosset P, Maxan A, Alpaugh M, Breger L, Dehay B, Tao Z, et al. Evidence for the spread of human-derived mutant huntingtin protein in mice and non-human primates. Neurobiol Dis. 2020;141:104941.

    Article  CAS  PubMed  Google Scholar 

  37. Choi I, Zhang Y, Seegobin SP, Pruvost M, Wang Q, Purtell K, et al. Microglia clear neuron-released alpha-synuclein via selective autophagy and prevent neurodegeneration. Nat Commun. 2020;11:1386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sung K, Jimenez-Sanchez M. Autophagy in Astrocytes and its Implications in Neurodegeneration. J Mol Biol. 2020;432:2605–21.

    Article  CAS  PubMed  Google Scholar 

  39. Mishra PS, Boutej H, Soucy G, Bareil C, Kumar S, Picher-Martel V, et al. Transmission of ALS pathogenesis by the cerebrospinal fluid. Acta Neuropathol Commun. 2020;8:65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weiss A, Abramowski D, Bibel M, Bodner R, Chopra V, DiFiglia M, et al. Single-step detection of mutant huntingtin in animal and human tissues: a bioassay for Huntington’s disease. Anal Biochem. 2009;395:8–15.

    Article  CAS  PubMed  Google Scholar 

  41. Byrne LM, Rodrigues FB, Johnson EB, Wijeratne PA, De Vita E, Alexander DC, et al. Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington’s disease. Sci Transl Med. 2018;10:eaat7108.

    Article  PubMed  Google Scholar 

  42. Lee CYD, Wang N, Shen K, Stricos M, Langfelder P, Cheon KH, et al. Disease-related Huntingtin seeding activities in cerebrospinal fluids of Huntington’s disease patients. Sci Rep. 2020;10:20295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Caron NS, Banos R, Yanick C, Aly AE, Byrne LM, Smith ED, et al. Mutant Huntingtin Is Cleared from the Brain via Active Mechanisms in Huntington Disease. J Neurosci. 2021;41:780–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sharma M, Subramaniam S. Rhes travels from cell to cell and transports Huntington disease protein via TNT-like protrusion. J Cell Biol. 2019;218:1972–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Costanzo M, Abounit S, Marzo L, Danckaert A, Chamoun Z, Roux P, et al. Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J Cell Sci. 2013;126:3678–85.

    CAS  PubMed  Google Scholar 

  46. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011;68:2667–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. S ELA, Mager I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12:347–57.

    Article  Google Scholar 

  49. Wang Y, Balaji V, Kaniyappan S, Kruger L, Irsen S, Tepper K, et al. The release and trans-synaptic transmission of Tau via exosomes. Mol Neurodegener. 2017;12:5.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vella LJ, Sharples RA, Lawson VA, Masters CL, Cappai R, Hill AF. Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J Pathol. 2007;211:582–90.

    Article  CAS  PubMed  Google Scholar 

  51. Sardar Sinha M, Ansell-Schultz A, Civitelli L, Hildesjo C, Larsson M, Lannfelt L, et al. Alzheimer’s disease pathology propagation by exosomes containing toxic amyloid-beta oligomers. Acta Neuropathol. 2018;136:41–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Harischandra DS, Rokad D, Neal ML, Ghaisas S, Manne S, Sarkar S, et al. Manganese promotes the aggregation and prion-like cell-to-cell exosomal transmission of alpha-synuclein. Sci Signal. 2019;12:eaau4543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang JKT, Langfelder P, Horvath S, Palazzolo MJ. Exosomes and Homeostatic Synaptic Plasticity Are Linked to Each other and to Huntington’s, Parkinson’s, and Other Neurodegenerative Diseases by Database-Enabled Analyses of Comprehensively Curated Datasets. Front Neurosci. 2017;11:149.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Deng J, Koutras C, Donnelier J, Alshehri M, Fotouhi M, Girard M, et al. Neurons Export Extracellular Vesicles Enriched in Cysteine String Protein and Misfolded Protein Cargo. Sci Rep. 2017;7:956.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Diaz-Hidalgo L, Altuntas S, Rossin F, D’Eletto M, Marsella C, Farrace MG, et al. Transglutaminase type 2-dependent selective recruitment of proteins into exosomes under stressful cellular conditions. Biochim Biophys Acta. 2016;1863:2084–92.

    Article  CAS  PubMed  Google Scholar 

  56. Denis HL, Lamontagne-Proulx J, St-Amour I, Mason SL, Weiss A, Chouinard S, et al. Platelet-derived extracellular vesicles in Huntington’s disease. J Neurol. 2018;265:2704–12.

    Article  CAS  PubMed  Google Scholar 

  57. Heng MY, Duong DK, Albin RL, Tallaksen-Greene SJ, Hunter JM, Lesort MJ, et al. Early autophagic response in a novel knock-in model of Huntington disease. Hum Mol Genet. 2010;19:3702–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Trajkovic K, Jeong H, Krainc D. Mutant Huntingtin Is Secreted via a Late Endosomal/Lysosomal Unconventional Secretory Pathway. J Neurosci : Off J Soc Neurosci. 2017;37:9000–12.

    Article  CAS  Google Scholar 

  59. Waldvogel HJ, Kim EH, Tippett LJ, Vonsattel JP, Faull RL. The Neuropathology of Huntington’s Disease. Curr Top Behav Neurosci. 2015;22:33–80.

    Article  CAS  PubMed  Google Scholar 

  60. Jones DR, Delenclos M, Baine AT, DeTure M, Murray ME, Dickson DW, et al. Transmission of Soluble and Insoluble alpha-Synuclein to Mice. J Neuropathol Exp Neurol. 2015;74:1158–69.

    CAS  PubMed  Google Scholar 

  61. Watts JC, Condello C, Stohr J, Oehler A, Lee J, DeArmond SJ, et al. Serial propagation of distinct strains of Abeta prions from Alzheimer’s disease patients. Proc Natl Acad Sci USA. 2014;111:10323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ascari LM, Rocha SC, Goncalves PB, Vieira T, Cordeiro Y. Challenges and Advances in Antemortem Diagnosis of Human Transmissible Spongiform Encephalopathies. Front Bioeng Biotechnol. 2020;8:585896.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Van Den Berge N, Ferreira N, Mikkelsen TW, Alstrup AKO, Tamguney G, Karlsson P, et al. Ageing promotes pathological alpha-synuclein propagation and autonomic dysfunction in wild-type rats. Brain. 2021;144:1853–68.

    Article  Google Scholar 

  64. Wegmann S, Bennett RE, Delorme L, Robbins AB, Hu M, McKenzie D, et al. Experimental evidence for the age dependence of tau protein spread in the brain. Sci Adv. 2019;5:eaaw6404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Moron-Oset J, Super T, Esser J, Isaacs AM, Gronke S, Partridge L. Glycine-alanine dipeptide repeats spread rapidly in a repeat length- and age-dependent manner in the fly brain. Acta Neuropathol Commun. 2019;7:209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Courte J, Bousset L, Boxberg YV, Villard C, Melki R, Peyrin JM. The expression level of alpha-synuclein in different neuronal populations is the primary determinant of its prion-like seeding. Sci Rep. 2020;10:4895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Alpaugh M, Cicchetti F. Huntington’s disease: lessons from prion disorders. J Neurol. 2021;68:3493–504.

    Article  Google Scholar 

  68. Manassero G, Guglielmotto M, Monteleone D, Vasciaveo V, Butenko O, Tamagno E, et al. Dual Mechanism of Toxicity for Extracellular Injection of Tau Oligomers versus Monomers in Human Tau Mice. J Alzheimers Dis. 2017;59:743–51.

    Article  CAS  PubMed  Google Scholar 

  69. Masuda-Suzukake M, Nonaka T, Hosokawa M, Oikawa T, Arai T, Akiyama H, et al. Prion-like spreading of pathological alpha-synuclein in brain. Brain. 2013;136:1128–38.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pinotsi D, Michel CH, Buell AK, Laine RF, Mahou P, Dobson CM, et al. Nanoscopic insights into seeding mechanisms and toxicity of alpha-synuclein species in neurons. Proc Natl Acad Sci USA. 2016;113:3815–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Katzmarski N, Ziegler-Waldkirch S, Scheffler N, Witt C, Abou-Ajram C, Nuscher B, et al. Abeta oligomers trigger and accelerate Abeta seeding. Brain Pathol. 2020;30:36–45.

    Article  CAS  PubMed  Google Scholar 

  72. Saudou F, Humbert S. The Biology of Huntingtin. Neuron. 2016;89:910–26.

    Article  CAS  PubMed  Google Scholar 

  73. Morozova OA, Gupta S, Colby DW. Prefibrillar huntingtin oligomers isolated from HD brain potently seed amyloid formation. FEBS Lett. 2015;589:1897–903.

    Article  CAS  PubMed  Google Scholar 

  74. Pieri L, Madiona K, Bousset L, Melki R. Fibrillar alpha-synuclein and huntingtin exon 1 assemblies are toxic to the cells. Biophys J. 2012;102:2894–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lau HHC, Ingelsson M, Watts JC. The existence of Abeta strains and their potential for driving phenotypic heterogeneity in Alzheimer’s disease. Acta Neuropathol. 2020;142:17–39.

    Article  PubMed  Google Scholar 

  76. Sathasivam K, Neueder A, Gipson TA, Landles C, Benjamin AC, Bondulich MK, et al. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc Natl Acad Sci USA. 2013;110:2366–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Barbaro BA, Lukacsovich T, Agrawal N, Burke J, Bornemann DJ, Purcell JM, et al. Comparative study of naturally occurring huntingtin fragments in Drosophila points to exon 1 as the most pathogenic species in Huntington’s disease. Hum Mol Genet. 2015;24:913–25.

    Article  CAS  PubMed  Google Scholar 

  78. Schindler F, Praedel N, Neuendorf N, Kunz S, Schnoegl S, Mason MA, et al. Small, Seeding-Competent Huntingtin Fibrils Are Prominent Aggregate Species in Brains of zQ175 Huntington’s Disease Knock-in Mice. Front Neurosci. 2021;15:682172.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Langbehn DR, Stout JC, Gregory S, Mills JA, Durr A, Leavitt BR, et al. Association of CAG Repeats With Long-term Progression in Huntington Disease. JAMA Neurol. 2019;76:1375–85.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Koshy BT, Zoghbi HY. The CAG/polyglutamine tract diseases: gene products and molecular pathogenesis. Brain Pathol. 1997;7:927–42.

    Article  CAS  PubMed  Google Scholar 

  81. Scherzinger E, Sittler A, Schweiger K, Heiser V, Lurz R, Hasenbank R, et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proc Natl Acad Sci USA. 1999;96:4604–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim DK, Cho KW, Ahn WJ, Perez-Acuna D, Jeong H, Lee HJ, et al. Cell-to-cell Transmission of Polyglutamine Aggregates in C. elegans. Exp Neurobiol. 2017;26:321–8.

    Article  PubMed  PubMed Central  Google Scholar 

  83. de Rus Jacquet A, Denis HL, Cicchetti F, Alpaugh M. Current and future applications of induced pluripotent stem cell-based models to study pathological proteins in neurodegenerative disorders. Mol Psychiatry. 2021;26:2685–706.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15:565–81.

    Article  PubMed  Google Scholar 

  85. Scahill RI, Zeun P, Osborne-Crowley K, Johnson EB, Gregory S, Parker C, et al. Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington’s disease Young Adult Study (HD-YAS): a cross-sectional analysis. Lancet Neurol. 2020;19:502–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Del Tredici K, Braak H. To stage, or not to stage. Curr Opin Neurobiol. 2020;61:10–22.

    Article  PubMed  Google Scholar 

  87. Nitta A, Itoh A, Hasegawa T, Nabeshima T. beta-Amyloid protein-induced Alzheimer’s disease animal model. Neurosci Lett. 1994;170:63–66.

    Article  CAS  PubMed  Google Scholar 

  88. Nakamura S, Murayama N, Noshita T, Annoura H, Ohno T. Progressive brain dysfunction following intracerebroventricular infusion of beta(1-42)-amyloid peptide. Brain Res. 2001;912:128–36.

    Article  CAS  PubMed  Google Scholar 

  89. Ramsingh AI, Manley K, Rong Y, Reilly A, Messer A. Transcriptional dysregulation of inflammatory/immune pathways after active vaccination against Huntington’s disease. Hum Mol Genet. 2015;24:6186–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Miller TW, Shirley TL, Wolfgang WJ, Kang X, Messer A. DNA vaccination against mutant huntingtin ameliorates the HDR6/2 diabetic phenotype. Mol Ther. 2003;7:572–9.

    Article  CAS  PubMed  Google Scholar 

  91. Bartl S, Oueslati A, Southwell AL, Siddu A, Parth M, David LS, et al. Inhibiting cellular uptake of mutant huntingtin using a monoclonal antibody: Implications for the treatment of Huntington’s disease. Neurobiol Dis. 2020;141:104943.

    Article  CAS  PubMed  Google Scholar 

  92. Bartl S, Xie Y, Potluri N, Gordon B, Willenberg A, Balazs K, et al. In vivo targeting and reduction of mtHTT protein by passive immunization with the monoclonal antibody C6-17. CHDI2021;poster I09;36.

  93. Aoyagi A, Condello C, Stohr J, Yue W, Rivera BM, Lee JC, et al. Abeta and tau prion-like activities decline with longevity in the Alzheimer’s disease human brain. Sci Transl Med. 2019;11:eaat8462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dujardin S, Commins C, Lathuiliere A, Beerepoot P, Fernandes AR, Kamath TV, et al. Tau molecular diversity contributes to clinical heterogeneity in Alzheimer’s disease. Nat Med. 2020;26:1256–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Busch A, Engemann S, Lurz R, Okazawa H, Lehrach H, Wanker EE. Mutant huntingtin promotes the fibrillogenesis of wild-type huntingtin: a potential mechanism for loss of huntingtin function in Huntington’s disease. J Biol Chem. 2003;278:41452–61.

    Article  CAS  PubMed  Google Scholar 

  96. Isas JM, Langen A, Isas MC, Pandey NK, Siemer AB. Formation and Structure of Wild Type Huntingtin Exon-1 Fibrils. Biochemistry. 2017;56:3579–86.

    Article  CAS  PubMed  Google Scholar 

  97. Shahnawaz M, Mukherjee A, Pritzkow S, Mendez N, Rabadia P, Liu X, et al. Discriminating alpha-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature. 2020;578:273–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nekooki-Machida Y, Kurosawa M, Nukina N, Ito K, Oda T, Tanaka M. Distinct conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different cytotoxicity. Proc Natl Acad Sci USA. 2009;106:9679–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Monckton DG. The Contribution of Somatic Expansion of the CAG Repeat to Symptomatic Development in Huntington’s Disease: A Historical Perspective. J Huntingt Dis. 2021;10:7–33.

    Article  CAS  Google Scholar 

  100. Neueder A, Landles C, Ghosh R, Howland D, Myers RH, Faull RLM, et al. The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington’s disease patients. Sci Rep. 2017;7:1307.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rauch JN, Luna G, Guzman E, Audouard M, Challis C, Sibih YE, et al. LRP1 is a master regulator of tau uptake and spread. Nature. 2020;580:381–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

FC is a recipient of a Researcher Chair from the Fonds de Recherche du Québec en Santé (FRQS) (grant # 28941) providing salary support and operating funds and receives funding from the Canadian Institutes of Health Research (CIHR) to conduct her HD-related research (Grant # PJT-168865 and PJT-162164). MA was supported by post-doctoral fellowships from CIHR, FRQS and the Huntington Disease Society of America (HDSA) during the course of the work described herein. HLD is supported by an FRQS doctoral research award.

Author information

Authors and Affiliations

Authors

Contributions

MA conceptualization; roles/writing—original draft; writing—review and editing. HLD conceptualization; visualization; writing—review and editing. FC conceptualization; writing—review and editing; supervision.

Corresponding author

Correspondence to Francesca Cicchetti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alpaugh, M., Denis, H.L. & Cicchetti, F. Prion-like properties of the mutant huntingtin protein in living organisms: the evidence and the relevance. Mol Psychiatry 27, 269–280 (2022). https://doi.org/10.1038/s41380-021-01350-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01350-4

This article is cited by

Search

Quick links