Condensed-matter physics articles within Nature Communications

Featured

  • Article
    | Open Access

    In the pseudogap state of cuprates, although diamagnetic signals have been detected, a Meissner effect has never been observed. Morenzoni and colleagues probe the local diamagnetic response in the normal state of an underdoped layer showing that a 'barrier' layer exhibits a Meissner effect.

    • Elvezio Morenzoni
    • , Bastian M. Wojek
    •  & Ivan Božović
  • Article
    | Open Access

    Micron and submicron-sized magnetic platelets in a vortex configuration may be useful in micromagnetics and spintronics applications. Kammereret al. show that a fast unidirectional vortex core reversal process occurs when azimuthal spin wave modes are excited at GHz frequency.

    • Matthias Kammerer
    • , Markus Weigand
    •  & Gisela Schuetz
  • Article |

    Bismuth ferrite has photoelectric properties that make it an attractive alternative for use in photovoltaic devices. Here, using photoelectric atomic force microscopy, the authors show that photogenerated carriers can be collected by the tip and suggest that this can be used in photoelectric applications.

    • Marin Alexe
    •  & Dietrich Hesse
  • Article |

    Monitoring the impact of annealing on nanometre-thick polymer layers provides new insight into the changes in the performance of macromolecular materials. Here, the authors present results showing a correlation between the deviations from bulk behaviour and the growth of an irreversibly adsorbed layer.

    • Simone Napolitano
    •  & Michael Wübbenhorst
  • Article |

    Skyrmions are particle-like topological entities in a continuous field that have a role in various condensed matter systems. Here, numerical methods are used to show that a chiral nematic liquid crystal could be used as a model system to facilitate direct structural investigation of Skyrmions.

    • Jun-ichi Fukuda
    •  & Slobodan Žumer
  • Article |

    Graphene and InAs nanowires are both promising materials for coherent spin manipulation, but coupling between a quantum system and its environment leads to decoherence. Here, the contribution of electron–phonon coupling to decoherence in graphene and InAs nanowire is studied.

    • P. Roulleau
    • , S. Baer
    •  & T. Ihn
  • Article |

    Cold ion traps have not previously been used to study sliding friction between crystal lattices. Here, Benassiet al. use simulations to show that cold ion traps could be used for detailed investigation of atomic scale friction.

    • A. Benassi
    • , A. Vanossi
    •  & E. Tosatti
  • Article
    | Open Access

    The performance of micromechanical and nanomechanical resonators is often hampered by mechanical damping. In this study, the authors demonstrate a numerical solver for the prediction of support-induced losses in these structures and verify experimentally the fidelity of this method.

    • Garrett D. Cole
    • , Ignacio Wilson-Rae
    •  & Markus Aspelmeyer
  • Article
    | Open Access

    Electronic excitations with energies near the superconducting energy gap are strongly affected by superconducting transitions. The authors show, with a comprehensive optical investigation, that excitations with energies up to two orders of magnitude greater are also affected by the transition.

    • A. Charnukha
    • , P. Popovich
    •  & A. V. Boris
  • Article
    | Open Access

    New memory devices are being developed to overcome the limitations of conventional silicon-based flash memory. Here, a non-volatile memory design is reported that uses a micromechanical cantilever to charge and discharge a floating gate, which controls charge transport through a carbon nanotube field-effect transistor.

    • Sang Wook Lee
    • , Seung Joo Park
    •  & Yung Woo Park
  • Article
    | Open Access

    In molecular spintronics, the spin state of a molecule may be switched by changing the molecular structure. Here, the spin of a single-molecule magnet is switched by applying an electric current using a scanning tunnelling microscope, which may aid in information coding at the single-molecule level.

    • Tadahiro Komeda
    • , Hironari Isshiki
    •  & Masahiro Yamashita
  • Article |

    Defining the structure of amorphous solids is a challenge because of their lack of structural order. In this study, the authors combine experiment and theory to analyse the surface of amorphous selenium, and show that the differences between surface and bulk are attributable to a particular type of coordination defect.

    • T. Scopigno
    • , W. Steurer
    •  & T. Wagner
  • Article |

    The interiors of outer solar planets are believed to contain water–methane mixtures that are subject to extreme pressures. Lee and Scandolo use molecular dynamics simulations to show that at high pressures there can be enhanced mixing and ionization, with consequences for the origin of the planetary magnetic field.

    • Mal-Soon Lee
    •  & Sandro Scandolo
  • Article |

    Interface effects in complex oxides could have interesting technological applications. Ariandoet al. demonstrate electronic phase separation and rich physics at a complex oxide interface between the two non-magnetic insulators LaAlO3 and SrTiO3.

    • Ariando
    • , X. Wang
    •  & T. Venkatesan
  • Article |

    In high-temperature superconductors, a very low density of states, the pseudogap, exists even above the critical temperature. Here, the authors show that this is also the case for a conventional superconductor, titanium nitride thin films, and that this pseudogap is induced by superconducting fluctuations.

    • Benjamin Sacépé
    • , Claude Chapelier
    •  & Marc Sanquer
  • Article
    | Open Access

    Signal processing by time reversal has thus far only been realized through nonlinear mechanisms. The authors describe an all-linear, and thus low-power, time-reversal process based on frequency inversion in a dynamically controlled artificial periodic structure, a dynamic magnonic crystal.

    • Andrii V. Chumak
    • , Vasil S. Tiberkevich
    •  & Burkard Hillebrands
  • Article |

    Colloidal suspensions are important in the pharmaceutical and food industries. Here, the breaking of filaments of a colloidal liquid under tensile loading is shown to be closely related to the jamming transition seen in its shear rheology; surprising viscoelasticity is also observed in the fluid under tension.

    • M.I. Smith
    • , R. Besseling
    •  & V. Bertola
  • Article
    | Open Access

    Water is composed of the electrochemically active species, H+ and OH, but has not been used as an active electronic material. In this study, a field-effect transistor is developed that uses water-infiltrated nanoporous glass as the gate insulator; this new application of water may be useful in electronics and energy storage.

    • Hiromichi Ohta
    • , Yukio Sato
    •  & Hideo Hosono
  • Article |

    The spatial scale over which metal–insulator transitions happen is not known, despite the importance of this phenomenon in basic and applied research. The authors show that in chromium-doped V2O3, with decreasing temperature, microscopic metallic domains coexist with an insulating background.

    • S. Lupi
    • , L. Baldassarre
    •  & M. Marsi
  • Article
    | Open Access

    Many technological applications would benefit from new ways of bringing complex materials near the insulator–metal transition region. The authors induce, in a Lantanum Strontium Titanate, a transition from insulating to metallic behaviour by structural intercalation of intrinsically insulating units, opening new avenues to engineer these materials.

    • Zhongchang Wang
    • , Masaki Okude
    •  & Yuichi Ikuhara
  • Article |

    The integration of oxide nanoelectronics with silicon platforms is a necessary step for the fabrication of ultrahigh-density devices. Here, the authors grow a LaAlO3/SrTiO3interface directly on silicon, and show the reversible creation of a two-dimensional electron gas confined within nanowires located on the surface.

    • J.W. Park
    • , D.F. Bogorin
    •  & C.B. Eom
  • Article |

    Flicker noise in nanoscale field effect transistors deviates from the simple frequency-dependent behaviour of macroscale objects. Here the authors show that Coulomb repulsion between nearby trap sites leads to an order of magnitude reduction in noise in these devices.

    • N. Clément
    • , K. Nishiguchi
    •  & D. Vuillaume
  • Article |

    In low-temperature one-dimensional metals, electrons condense into collective charge-density wave states. Zybtsevet al. observe conductivity jumps with temperature in a metal bar, as only specific wavelengths are permitted in the bar for the charge-density wave modes.

    • S.G. Zybtsev
    • , V.Ya. Pokrovskii
    •  & S.V. Zaitsev-Zotov
  • Article |

    The authors report a new kind of magnetism at the interface between two complex oxides, which shows both spin and orbital components due to degeneracy in the electronic states of SrTiO3. This could be useful in magnetic tunnel junctions and to further study superexchange coupling.

    • J. Garcia-Barriocanal
    • , J.C. Cezar
    •  & J. Santamaria
  • Article
    | Open Access

    Chemical systems with switchable molecular spins could allow the development of materials with controllable spintronic properties. Here, the authors show that nitric oxide coordination to cobalt(II)tetraphenylporphyrin on a nickel surface, followed by thermal dissociation, leads to off-on spin switching.

    • Christian Wäckerlin
    • , Dorota Chylarecka
    •  & Nirmalya Ballav
  • Article |

    Electrons in metals at extremely high magnetic fields show interesting quantum structures. The authors measure the angle-dependent Nernst effect with high precision and show that, for bismuth, Coulomb interactions between the electrons become important in this ultraquantum regime.

    • Huan Yang
    • , Benoît Fauqué
    •  & Kamran Behnia
  • Article |

    The magnetic flux lines in a superconductor present intricate patterns, whose origins are seldom understood. Here the authors link them to geometrical effects by means of the 'hairy ball' theorem, which states that for a vector field on a sphere there will always be at least one singularity.

    • Mark Laver
    •  & Edward. M. Forgan
  • Article |

    The complex electronic motion in the quantum Hall regime in semiconductors has so far eluded analysis of its microscopic structure. Here, the authors use scanning gate microscopy to measure the spatial structure of transport inside a metal in this regime, opening the way for localized manipulation of the electronic states.

    • B. Hackens
    • , F. Martins
    •  & V. Bayot