Analytical chemistry articles within Nature Communications

Featured

  • Article
    | Open Access

    Simple methods for attaching polynucleotides to gold nanoparticles are of interest for simplifying conjugation in a range of applications. Here, the authors report a microwave heating-based method for the fast, one-step attachment of a range of thiolated or non-thiolated DNA and RNA to gold nanoparticles.

    • Mengqi Huang
    • , Erhu Xiong
    •  & Xiaoming Zhou
  • Article
    | Open Access

    Gluten peptides from wheat enter the bloodstream and are excreted in urine but are yet to be chemically characterised. Here, the authors show by mass spectrometry that quantitative and qualitative differences in urinary peptides can be detected between healthy people and patients with celiac disease.

    • Brad A. Palanski
    • , Nielson Weng
    •  & Joshua E. Elias
  • Article
    | Open Access

    The Strecker synthesis is considered a viable route to amino acids formation on the primordial Earth. Here the authors succeed in observing its elusive intermediate aminomethanol, formed by insertion of an electronically excited oxygen atom in methylamine and stabilized by an icy matrix, using isomer-selective photoionization time-of-flight mass spectrometry during thermal desorption of the ice mixture.

    • Santosh K. Singh
    • , Cheng Zhu
    •  & Ralf I. Kaiser
  • Article
    | Open Access

    Patients with pancreatic cancer have a poor prognosis, more research is required to identify the disease at an earlier stage. Here, the authors use lipid profiles of blood samples and show that they can distinguish patients with pancreatic cancer from healthy controls.

    • Denise Wolrab
    • , Robert Jirásko
    •  & Michal Holčapek
  • Article
    | Open Access

    Mannosyl-queuosine (manQ) is a non-canonical RNA nucleoside present in the anticodon loop of certain tRNAs. Here, the authors use a combination of total synthesis and mass spectrometry to contradict the literature-reported structure and show that manQ features an alpha-allyl connectivity of its mannose moiety.

    • Markus Hillmeier
    • , Mirko Wagner
    •  & Thomas Carell
  • Article
    | Open Access

    The stereoselective analysis of mixtures of chiral compounds typically requires time-consuming chromatography. Here, the authors combine reaction based chiroptical sensing and chemometric tools to directly determine the absolute configuration, enantiomeric composition and concentration of convoluted samples without physical separation.

    • Diandra S. Hassan
    •  & Christian Wolf
  • Article
    | Open Access

    The fungal cell wall is a complex structure composed mainly of glucans, chitin and glycoproteins. Here, the authors use solid-state NMR spectroscopy to assess the cell wall architecture of Aspergillus fumigatus, comparing wild-type cells and mutants lacking major structural polysaccharides, with insights into the distinct functions of these components.

    • Arnab Chakraborty
    • , Liyanage D. Fernando
    •  & Tuo Wang
  • Article
    | Open Access

    Time-resolved in situ (TRIS) X-ray powder diffraction promises great potential to study mechanochemical processes. Here, the authors develop a strategy to enhance the resolution of TRIS experiments to allow deeper interpretation of mechanochemical transformations; the method is applied to a variety of model systems including inorganic, metal-organic, and organic mechanosyntheses.

    • Giulio I. Lampronti
    • , Adam A. L. Michalchuk
    •  & Franziska Emmerling
  • Article
    | Open Access

    Biomonitoring of sweat from fingertips overcomes current limitations in time-resolved metabolomic profiling of humans and may prove to become a powerful, noninvasive tool for precision medicine. Here, in a feasibility study of short interval sampling of sweat from fingertips, the authors assay individual dynamic metabolic patterns of endogenous and exogenous molecules.

    • Julia Brunmair
    • , Mathias Gotsmy
    •  & Christopher Gerner
  • Article
    | Open Access

    Monitoring single molecule chemical reactions can be difficult and nanopore based strategies which have shown promise are technically challenging. Here, the authors report on a technique which allows for the direct observation of different reactions and demonstrate the ability to distinguish clinically relevant analogues.

    • Wendong Jia
    • , Chengzhen Hu
    •  & Shuo Huang
  • Article
    | Open Access

    Detection of the tumour boundary in prostate cancer is required for surgery. Here the authors present a fluorescent molecular rotor probe to target a prostate cancer marker, prostate-specific membrane antigen (PSMA), which they use in a xenograft mouse model to show it can be used for in vivo imaging.

    • Jingming Zhang
    • , Anastasia Rakhimbekova
    •  & Xing Yang
  • Article
    | Open Access

    Here, the authors use solid-state NMR and EPR measurements to characterise the ATP hydrolysis transition state of the oligomeric bacterial DnaB helicase from Helicobacter pylori, which was trapped by using aluminium fluoride as a chemical mimic. They identify protein protons that coordinate to the phosphate groups of ADP and DNA and observe that the aluminium fluoride unit is highly mobile and fast-rotating.

    • Alexander A. Malär
    • , Nino Wili
    •  & Thomas Wiegand
  • Article
    | Open Access

    Sustainable strategies for shepherding active particles are at the heart of many prospective applications. Here, Palacios et al. use the emerging topological properties of a microfluidic maze array to passively guide self-propelled colloids from the interior to the edges of the device.

    • Lucas S. Palacios
    • , Serguei Tchoumakov
    •  & Adolfo G. Grushin
  • Article
    | Open Access

    Ligand-oligonucleotide interactions can integrate both small molecules and proteins into nucleic acid-based circuits. Here the authors design ligand-aptamer complexes to control strand-displacement reactions for versatile ligand transduction.

    • Qiu-Long Zhang
    • , Liang-Liang Wang
    •  & Liang Xu
  • Article
    | Open Access

    Many current immunoassays require multiple washing, incubation and optimization steps. Here the authors present Ratiometric Plug-and-Play Immunodiagnostics (RAPPID), a generic assay platform that uses ratiometric bioluminescent detection to allow sandwich immunoassays to be performed directly in solution.

    • Yan Ni
    • , Bas J. H. M. Rosier
    •  & Maarten Merkx
  • Article
    | Open Access

    Finding durable, high-density media for data storage is necessary to support the ever-expanding generation of digital data. Here, the authors use peptide sequences to store digital data and retrieve them using tandem mass spectrometry, proving that peptides can be used as a storage medium.

    • Cheuk Chi A. Ng
    • , Wai Man Tam
    •  & Zhong-Ping Yao
  • Article
    | Open Access

    The electron-withdrawing target (EWT)-induced fluorescence quenching is an unsolved issue in intramolecular charge transfer (ICT) fluorophores that limits their applicability. Here, the authors report a simple and generalizable strategy to reverse the EWT-induced quenching mode into light-up mode, by introducing an indazole building block between the π-bridge and the donor in the ICT scaffold.

    • Chenxu Yan
    • , Zhiqian Guo
    •  & Wei-Hong Zhu
  • Article
    | Open Access

    A large number of mass spectra from different samples have been collected, and to identify small molecules from these spectra, database searches are needed, which is challenging. Here, the authors report molDiscovery, a mass spectral database search method that uses an algorithm to generate mass spectrometry fragmentations and learns a probabilistic model to match small molecules with their mass spectra.

    • Liu Cao
    • , Mustafa Guler
    •  & Hosein Mohimani
  • Article
    | Open Access

    Several scenarios exist to explain the origins of the organic matter found in carbonaceous chondrites. Here, the authors show laboratory experiments confirming that a significant portion of the soluble organic matter can originate from organic ices inherited from the dense molecular cloud.

    • G. Danger
    • , V. Vinogradoff
    •  & P. Schmitt-Kopplin
  • Article
    | Open Access

    SERS assays have potential for multiplexed detection of biomarkers but differentiation of SERS tags remains a challenge. Here, the authors report the creation of 14 distinct geometrically controlled metal carbonyl tags and demonstrate multiplexed detection of nasopharyngeal carcinoma biomarkers from patient blood.

    • Duo Lin
    • , Chang-Lin Hsieh
    •  & Kien Voon Kong
  • Article
    | Open Access

    Here, the authors present a method for quantifying molecular interactions on a glass surface, based on measuring surface refractive index changes via the reflectivity near the critical angle. They demonstrate tunable sensitivity and dynamic range, deep vertical sensing range, also for intracellular signals.

    • Guangzhong Ma
    • , Runli Liang
    •  & Shaopeng Wang
  • Article
    | Open Access

    Determining the structure of amorphous solids is important for optimization of pharmaceutical formulations, but direct relation of molecular dynamics (MD) simulations and NMR to achieve this is challenging. Here, the authors use a machine learning model of chemical shifts to solve the atomic-level structure of the hydrated amorphous drug AZD5718 by combining dynamic nuclear polarization-enhanced solid-state NMR with predicted shifts for MD simulations of large systems.

    • Manuel Cordova
    • , Martins Balodis
    •  & Lyndon Emsley
  • Article
    | Open Access

    Analyzing the lipidomes of single cells remains a challenge. Here, the authors present a strategy to identify class, fatty acyl-chain, C=C locations and sn-positions of lipids in single cells, and use their method to identify individual gefitinib-resistant cells in a wild-type lung cancer cell population.

    • Zishuai Li
    • , Simin Cheng
    •  & Zheng Ouyang
  • Article
    | Open Access

    Though there is a long archaeological record of the use of honey, beeswax and other bee products, there are few known records from Africa. Here Dunne et al. analyse lipid residues from pottery from the Nok culture, Nigeria, dating to ~3500 years ago and find evidence of the collection and processing of bee products, likely honey.

    • Julie Dunne
    • , Alexa Höhn
    •  & Richard P. Evershed
  • Article
    | Open Access

    Investigation of spatial organization and relationships of biomolecules in cellular nanoenvironments is necessary to understand essential biological processes, but methodologically challenging. Here, the authors report cellular macromolecules-tethered DNA walking indexing (Cell-TALKING) to probe the nanoenvironments of DNA modifications around histone post-translational modifications, and explore the nanoenvironments in different cancer cell lines and clinical specimens.

    • Feng Chen
    • , Min Bai
    •  & Yongxi Zhao
  • Article
    | Open Access

    Studies of metabolites in neurodegeneration have not yet used sebum as a source fluid. Here the authors demonstrate the potential of metabolomics of sebum samples from individuals with Parkinson’s disease and controls.

    • Eleanor Sinclair
    • , Drupad K. Trivedi
    •  & Perdita Barran
  • Article
    | Open Access

    It is currently challenging to identify protein structures at low concentrations. Here the authors report optical tweezers-coupled Raman spectroscopy to generate tunable and reproducible SERS enhancements with single-molecule level sensitivity and use the method to detect protein structural features.

    • Xin Dai
    • , Wenhao Fu
    •  & Jinqing Huang
  • Article
    | Open Access

    Glycolipids are glycoconjugates with important biological functions, but techniques for their analysis are deficient. Here, the authors report the use of cryogenic gas-phase infrared spectroscopy to investigate isomerism in a set of immunologically relevant glycolipids, and show that their structural features can be accurately resolved based on a narrow spectral fingerprint region.

    • Carla Kirschbaum
    • , Kim Greis
    •  & Kevin Pagel
  • Article
    | Open Access

    Currently the most common method of COVID-19 diagnosis is by qRT-PCR which is slow and requires expensive instrumentation. Here the authors report an electrochemical biosensor based on isothermal rolling circle amplification for rapid detection of SARS-CoV-2 in clinical samples.

    • Thanyarat Chaibun
    • , Jiratchaya Puenpa
    •  & Benchaporn Lertanantawong
  • Article
    | Open Access

    Microbial symbionts can help their hosts metabolise diverse diets. A study on herbivorous turtle ants identifies the cuticular components which are nitrogen-enriched by gut bacteria, highlighting the role of symbionts in insect evolution.

    • Christophe Duplais
    • , Vincent Sarou-Kanian
    •  & Corrie S. Moreau
  • Article
    | Open Access

    The charging of Fe and Mn oxide anodes in lithium-ion batteries are believed to form rocksalt phases via reconstructive conversion reactions. Here, the authors show that MxOy (M = Fe, Mn) transform into non-native body-centred cubic FeO and zincblende MnO via topotactic displacement-like pathways.

    • Xiao Hua
    • , Phoebe K. Allan
    •  & Andrew L. Goodwin
  • Article
    | Open Access

    Dynamic kinetic resolution is a common approach for the preparation of optically pure amino acids using enzymes. Here the authors report an alternative method based on enantioselective extraction coupled with racemization, in which a bulky extractant affords hydrophobic extractable imines with amino acids rapidly, reversibly and enantioselectively.

    • Haofei Huang
    • , Yingji Jin
    •  & Kwan Mook Kim
  • Article
    | Open Access

    N-phosphorylation plays a critical role in central metabolism and signaling processes, however, enrichment methods for N-phosphopeptides are limited by the P-N bond lability. Here, the authors report the synthesis and use of silica microspheres functionalized with bis(zinc(II)-dipicolylamine) in N-phosphopeptides effective enrichment.

    • Yechen Hu
    • , Bo Jiang
    •  & Yukui Zhang
  • Article
    | Open Access

    Currently available mitochondria-targeted fluorescent dyes emit only one color in the visible or NIR-I and their applications are limited. Here, the authors develop upconversion mitochondria-targeted NIR-II fluorophores for synchronous upconversion-mitochondria-targeted cell imaging, in vivo NIR-II osteosarcoma imaging and photothermal efficiency

    • Hui Zhou
    • , Xiaodong Zeng
    •  & Yuling Xiao
  • Article
    | Open Access

    XylE is a bacterial xylose transporter and homologue of human glucose transporters GLUTs 1-4. HDX-MS, mutagenesis and MD simulations suggest that protonation of a conserved aspartate triggers conformational transition from outward- to inward facing state only in the presence of substrate xylose. In contrast, inhibitor glucose locks the transporter in the outward facing state.

    • Ruyu Jia
    • , Chloe Martens
    •  & Argyris Politis
  • Article
    | Open Access

    Myo-Inositol phosphates (InsPs) and pyrophosphates (PP-InsPs) are important second messengers but their analysis remains challenging. Here, the authors develop a capillary electrophoresis-mass spectrometry method for the identification and quantitation of InsP and PP-InsP isomers in cells and tissues.

    • Danye Qiu
    • , Miranda S. Wilson
    •  & Henning J. Jessen
  • Article
    | Open Access

    Fast and specific detection of pathogenic bacteria is needed to combat infections. Here the authors generate an array of near-infrared biosensors based on carbon nanotubes to detect released metabolites and virulence factors and use them to distinguish pathogens such as S. aureus and P. aeruginosa.

    • Robert Nißler
    • , Oliver Bader
    •  & Sebastian Kruss