Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Volume 20 Issue 1, January 2024

Coherent control in chaotic cavities

Non-Hermitian physics enables dynamic control of optical behaviour in real time, such as reflectionless scattering modes, which have now been demonstrated in a chaotic photonic microcavity.

See Jiang et al. and Stone

Image: Xuefeng Jiang, Shixiong Yin and Andrea Alù, Photonics Initiative, Advanced Science Research Center, City University of New York. Cover Design: Amie Fernandez

Editorial

  • Two-dimensional crystals have revolutionized fundamental research across a staggering range of disciplines. We take stock of the progress gained after twenty years of work.

    Editorial

    Advertisement

Top of page ⤴

Thesis

Top of page ⤴

Books & Arts

Top of page ⤴

News & Views

  • The Kondo effect — the screening of an impurity spin by conduction electrons — is a fundamental many-body effect. However, recent experiments combined with simulations have caused a long-standing model system for the single-atom Kondo effect to fail.

    • Jörg Kröger
    • Takashi Uchihashi
    News & Views
  • Semiconducting dipolar excitons — bound states of electrons and holes — in artificial moiré lattices constitute a promising condensed matter system to explore the phase diagram of strongly interacting bosonic particles.

    • Nadine Leisgang
    News & Views
  • The ability to extract information from diffuse background signals in ultrafast electron diffraction experiments now enables a direct view of the formation of topological defects during a light-induced phase transition.

    • Isabella Gierz
    News & Views
  • Trojan beams, which are optical counterparts of Trojan asteroids that maintain stable orbits alongside planets, have been successfully showcased in experiments, opening up possibilities for transporting light in unconventional settings.

    • Tomáš Tyc
    • Tomáš Čižmár
    News & Views
  • A nonlinear optical approach has now enabled picosecond control of a complex band structure, driving a non-Hermitian topological phase transition across an exceptional-point singularity.

    • Jiangbin Gong
    • Ching Hua Lee
    News & Views
  • A decade ago, the anti-laser made waves as a new type of perfect absorber that functions as a one-way trap door for light. Experiments have now demonstrated the control of light without absorbing it.

    • A. Douglas Stone
    News & Views
  • Electrons trapped above the surface of solid neon can be used to create qubits using spatial states with different charge distributions. These charge qubits combine direct electric field control with long coherence times.

    • Atsushi Noguchi
    News & Views
  • Networks of dynamic actin filaments and myosin motors, confined in cell-like droplets, drive diverse spatiotemporal patterning of contractile flows, waves, and spirals. This multiscale active sculpting is tuned by the system dynamics and size.

    • Rae M. Robertson-Anderson
    News & Views
  • Physical networks, composed of nodes and links that occupy a spatial volume, are hard to study with conventional techniques. A meta-graph approach that elucidates the impact of physicality on network structure has now been introduced.

    • Zoltán Toroczkai
    News & Views
Top of page ⤴

Research Briefings

  • Subwavelength photonic gratings can host long-lived, negative-effective-mass photonic modes that couple strongly to electron transitions in constituent active materials. The resulting bosonic hybrid light–matter modes, or exciton-polaritons, can be optically configured to accumulate into various macroscopic artificial complexes and lattices of coherent quantum fluids.

    Research Briefing
  • Landau’s theory of Fermi liquids predicts that impurities embedded in a Fermi sea of atoms form quasiparticles called polarons that interact with one another via the surrounding medium. Such mediated polaron–polaron interactions have been directly observed and are shown to depend on the quantum statistics of the impurities.

    Research Briefing
  • Neutron spectroscopy, entanglement analysis, and simulations provide evidence that KYbSe2 closely approximates a 2D quantum spin liquid. Although KYbSe2 displays magnetic ordering at low temperatures, its magnetic dynamics are dominated by fractionalized excitations that exhibit anomalously large quantum entanglement, indicating that on finite timescales KYbSe2 exhibits quantum spin liquid physics.

    Research Briefing
Top of page ⤴

Articles

Top of page ⤴

Amendments & Corrections

Top of page ⤴

Measure for Measure

  • Quantum technologies change our notion of measurement. Chenyu Wang elaborates on how quantum squeezing enhances the precision of gravitational-wave interferometers.

    • Chenyu Wang
    Measure for Measure
Top of page ⤴

Search

Quick links