Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for spinarons in Co adatoms

Abstract

Cobalt atoms on the (111) surfaces of noble metals are considered to be prototypical systems for the Kondo effect in scanning tunnelling microscopy experiments. Recent first-principles calculations, however, suggest that the experimentally observed spectroscopic zero-bias anomaly can be interpreted in terms of excitations of the spin of the Co atom and the formation of a novel many-body state, namely, the spinaron, rather than from a Kondo resonance. The spinaron is a magnetic polaron that results from the interaction of spin excitations with conduction electrons. However, the experimental confirmation for the existence of spinarons remains elusive. Here we present experimental evidence for spinaronic states in Co atoms on the Cu(111) surface. Our spin-averaged and spin-polarized scanning tunnelling spectroscopy measurements in high magnetic fields allow us to discriminate between the different existing theoretical models and to invalidate the prevailing Kondo-based interpretation of the zero-bias anomaly. Our extended ab initio calculations instead suggest the presence of multiple spinaronic states. Thus, our work provides the foundation to explore the characteristics and consequences of these intriguing hybrid many-body states as well as their design in artificial nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the field-induced splitting of magnetic resonances and excitations.
Fig. 2: Magnetic-field-dependent splitting of the ZBA.
Fig. 3: Implementation and results of spin-resolved measurements on Co/Cu(111).
Fig. 4: Orbital-resolved LDOS and theoretical inelastic tunnelling spectra.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding authors upon request. Source data are provided with this paper.

Code availability

The computer code used for data analysis is available from the corresponding authors upon request.

References

  1. Kondo, J. Resistance minimum in dilute magnetic alloys. Progr. Theor. Phys. 32, 37–49 (1964).

    Article  Google Scholar 

  2. Abrikosov, A. A. Electron scattering on magnetic impurities in metals and anomalous resistivity effects. Phys. Phys. Fiz. 2, 5 (1965).

    MathSciNet  Google Scholar 

  3. Suhl, H. Dispersion theory of the Kondo effect. Phys. Rev. 138, A515 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  4. Ternes, M., Heinrich, A. J. & Schneider, W.-D. Spectroscopic manifestations of the Kondo effect on single adatoms. J. Phys.: Condens. Matter 21, 053001 (2009).

    ADS  Google Scholar 

  5. Li, J., Schneider, W.-D., Berndt, R. & Delley, B. Kondo scattering observed at a single magnetic impurity. Phys. Rev. Lett. 80, 2893 (1998).

    Article  ADS  Google Scholar 

  6. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S. Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998).

    Article  Google Scholar 

  7. Manoharan, H. C., Lutz, C. P. & Eigler, D. M. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512–515 (2000).

    Article  Google Scholar 

  8. Knorr, N., Schneider, M. A., Diekhöner, L., Wahl, P. & Kern, K. Kondo effect of single Co adatoms on Cu surfaces. Phys. Rev. Lett. 88, 096804 (2002).

    Article  ADS  Google Scholar 

  9. Schneider, M. A., Vitali, L., Knorr, N. & Kern, K. Observing the scattering phase shift of isolated Kondo impurities at surfaces. Phys. Rev. B 65, 121406 (2002).

    Article  ADS  Google Scholar 

  10. Pivetta, M., Ternes, M., Patthey, F. & Schneider, W.-D. Diatomic molecular switches to enable the observation of very-low-energy vibrations. Phys. Rev. Lett. 99, 126104 (2007).

    Article  ADS  Google Scholar 

  11. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866 (1961).

    Article  ADS  Google Scholar 

  12. Fernández, J., Roura-Bas, P. & Aligia, A. A. Theory of differential conductance of Co on Cu(111) including Co s and d orbitals, and surface and bulk Cu states. Phys. Rev. Lett. 126, 046801 (2021).

    Article  ADS  Google Scholar 

  13. Tacca, M. S., Jacob, T. & Goldberg, E. C. Influence of surface states on the conductance spectra for Co adsorbed on Cu(111). Phys. Rev. B 103, 245419 (2021).

    Article  ADS  Google Scholar 

  14. Schweflinghaus, B., dos Santos Dias, M., Costa, A. T. & Lounis, S. Renormalization of electron self-energies via their interaction with spin excitations: a first-principles investigation. Phys. Rev. B 89, 235439 (2014).

    Article  ADS  Google Scholar 

  15. Bouaziz, J., Mendes Guimarãres, F. S. & Lounis, S. A new view on the origin of zero-bias anomalies of Co atoms atop noble metal surfaces. Nat. Commun. 11, 6112 (2020).

    Article  ADS  Google Scholar 

  16. Edwards, D. M. & Hertz, J. A. Electron-magnon interactions in itinerant ferromagnetism. II. Strong ferromagnetism. J. Phys. F: Met. Phys. 3, 2191 (1973).

    Article  ADS  Google Scholar 

  17. Barral, M. A., Llois, A. M. & Aligia, A. A. Hybridization of impurity states with the Shockley surface band versus bulk states. Phys. Rev. B 70, 035416 (2004).

    Article  ADS  Google Scholar 

  18. Lin, C.-Y., Castro Neto, A. H. & Jones, B. A. First-principles calculation of the single impurity surface Kondo resonance. Phys. Rev. Lett. 97, 156102 (2006).

    Article  ADS  Google Scholar 

  19. Henzl, J. & Morgenstern, K. Contribution of the surface state to the observation of the surface Kondo resonance. Phys. Rev. Lett. 98, 266601 (2007).

    Article  ADS  Google Scholar 

  20. Baruselli, P. P., Requist, R., Smogunov, A., Fabrizio, M. & Tosatti, E. Co adatoms on Cu surfaces: ballistic conductance and Kondo temperature. Phys. Rev. Lett. 92, 045119 (2015).

    Google Scholar 

  21. Li, Q. L. et al. Role of the surface state in the Kondo resonance width of a Co single adatom on Ag(111). Phys. Rev. B 97, 035417 (2018).

    Article  ADS  Google Scholar 

  22. Moro-Lagares, M. et al. Quantifying the leading role of the surface state in the Kondo effect of Co/Ag(111). Phys. Rev. B 97, 235442 (2018).

    Article  ADS  Google Scholar 

  23. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S. Local spectroscopy of a Kondo impurity: Co on Au(111). Phys. Rev. B 64, 165412 (2001).

    Article  ADS  Google Scholar 

  24. Néel, N. et al. Controlling the Kondo effect in CoCun clusters atom by atom. Phys. Rev. Lett. 101, 266803 (2008).

    Article  ADS  Google Scholar 

  25. Kawahara, S. L. et al. Kondo peak splitting on a single adatom coupled to a magnetic cluster. Phys. Rev. B 82, 020406 (2010).

    Article  ADS  Google Scholar 

  26. Choi, D.-J. et al. Kondo resonance of a Co atom exchange coupled to a ferromagnetic tip. Nano Lett. 16, 6298–6302 (2016).

    Article  Google Scholar 

  27. Néel, N. et al. Single-Co Kondo effect in atomic Cu wires on Cu(111). Phys. Rev. Res. 2, 023309 (2020).

    Article  Google Scholar 

  28. Shick, A. B., Tchaplianka, M. & Lichtenstein, A. I. Spin- orbit coupling and Kondo resonance in the Co adatom on the Cu(100) surface: DFT plus exact diagonalization study. Phys. Rev. B 106, 245115 (2022).

    Article  ADS  Google Scholar 

  29. Hänke, T., Bode, M., Krause, S., Berbil-Bautista, L. & Wiesendanger, R. Temperature-dependent scanning tunneling spectroscopy of Cr(001): orbital Kondo resonance versus surface state. Phys. Rev. B 72, 085453 (2005).

    Article  ADS  Google Scholar 

  30. Otte, A. F. et al. The role of magnetic anisotropy in the Kondo effect. Nat. Phys. 4, 847–850 (2008).

    Article  Google Scholar 

  31. Knorr, N. et al. Long-range adsorbate interactions mediated by a two-dimensional electron gas. Phys. Rev. B 65, 115420 (2002).

    Article  ADS  Google Scholar 

  32. Patton, K. R., Kettemann, S., Zhuravlev, A. & Lichtenstein, A. Spin-polarized tunneling microscopy and the Kondo effect. Phys. Rev. B 76, 100408 (2007).

    Article  ADS  Google Scholar 

  33. Seridonio, A. C., Souza, F. M. & Shelykh, I. A. Spin-polarized STM for a Kondo adatom. J. Phys.: Condens. Matter 21, 095003 (2009).

    ADS  Google Scholar 

  34. von Bergmann, K., Ternes, M., Loth, S., Lutz, C. P. & Heinrich, A. J. Spin polarization of the split Kondo state. Phys. Rev. Lett. 114, 076601 (2015).

    Article  ADS  Google Scholar 

  35. Loth, S. et al. Controlling the state of quantum spins with electric currents. Nat. Phys. 6, 340–344 (2010).

    Article  Google Scholar 

  36. Loth, S., Lutz, C. P. & Heinrich, A. J. Spin-polarized spin excitation spectroscopy. New J. Phys. 12, 125021 (2010).

    Article  ADS  Google Scholar 

  37. Brinker, S., Küster, F., Parkin, S. S. P., Sessi, P. & Lounis, S. Anomalous excitations of atomically crafted quantum magnets. Sci. Adv. 8, eabi7291 (2022).

    Article  ADS  Google Scholar 

  38. Hirjibehedin, C. F. et al. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317, 1199–1203 (2007).

    Article  Google Scholar 

  39. Cui, J., White, J. D. & Diehl, R. D. Anomalous inelastic He-atom scattering intensities for the vibrational modes of alkali metals on graphite. Surf. Sci. Lett. 293, L841–L846 (1993).

    Google Scholar 

  40. Ormaza, M. et al. Controlled spin switching in a metallocene molecular junction. Nat. Commun. 8, 1974 (2017).

    Article  ADS  Google Scholar 

  41. Verlhac, B. et al. Atomic-scale spin sensing with a single molecule at the apex of a scanning tunneling microscope. Science 366, 623–627 (2019).

    Article  Google Scholar 

  42. Brodde, A., Dreps, K., Binder, J., Lunau, C. & Neddermeyer, H. Scanning tunneling microscopy and photoemission from Fe/Cu(111). Phys. Rev. B 47, 6609 (1993).

    Article  ADS  Google Scholar 

  43. Ternes, M. Spin excitations and correlations in scanning tunneling spectroscopy. New J. Phys. 17, 063016 (2015).

    Article  ADS  Google Scholar 

  44. Tersoff, J. & Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998 (1983).

    Article  ADS  Google Scholar 

  45. Néel, N., Kröger, J. & Berndt, R. Kondo effect of a Co atom on Cu(111) in contact with an iron tip. Phys. Rev. B 7, 233401 (2010).

    Article  ADS  Google Scholar 

  46. Bork, J. et al. A tunable two-impurity Kondo system in an atomic point contact. Phys. Rev. B 82, 233401 (2010).

    Google Scholar 

  47. Chen, W., Jamneala, T., Madhavan, V. & Crommie, M. F. Disappearance of the Kondo resonance for atomically fabricated cobalt dimers. Phys. Rev. B 60, R8529 (1999).

    Article  ADS  Google Scholar 

  48. Noei, N. et al. Manipulating the spin orientation of Co Atoms using monatomic Cu chains. Nano Lett. 23, 8988–8994 (2023).

    Article  ADS  Google Scholar 

  49. Bauer, D. S. G. Development of a relativistic full-potential first-principles multiple scattering Green function method applied to complex magnetic textures of nano structures at surfaces. Forschungszentrum Jülich (2014).

  50. Lounis, S., Costa, A. T., Muniz, R. B. & Mills, D. L. Dynamical magnetic excitations of nanostructures from first principles. Phys. Rev. Lett. 105, 187205 (2010).

    Article  ADS  Google Scholar 

  51. Lounis, S., Costa, A. T., Muniz, R. B. & Mills, D. L. Theory of local dynamical magnetic susceptibilities from the Korringa-Kohn-Rostoker Green function method. Phys. Rev. B 83, 035109 (2011).

    Article  ADS  Google Scholar 

  52. dos Santos Dias, M., Schweflinghaus, B., Blügel, S. & Lounis, S. Relativistic dynamical spin excitations of magnetic adatoms. Phys. Rev. B 91, 075405 (2015).

    Article  ADS  Google Scholar 

  53. Bouaziz, J., Mendes Guimarães, F. S. & Lounis, S. A new view on the origin of zero-bias anomalies of Co atoms atop noble metal surfaces. Nat. Commun. 11, 6112 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the DFG through SFB 1170 ‘ToCoTronics’ and the Würzburg-Dresden Cluster of Excellence ct.qmat, EXC2147, via project ID 390858490. M.B., A.O. and F.F. thank P. Sessi (Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany) for bringing this scientific topic to our attention. J.B. acknowledges support by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 856538, project ‘3D MAGiC’). S.L. acknowledges S. Brinker and A. Weismann for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

F.F., A.O., M.B. and S.L. conceived the experiments. F.F. and A.O. conducted the measurements and analysed the data. J.B. performed the first-principles simulations. S.L. and M.B. supervised the project. All authors discussed the results. F.F. and S.L. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Artem Odobesko or Samir Lounis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Jörg Kröger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and discussion.

Source data

Source Data Fig. 1

Data points used for the schematic of the field-induced splitting of magnetic resonances and excitations.

Source Data Fig. 2a

STM data of the Cu(111) surface with single adsorbed Co atoms (Fig. 2a).

Source Data Fig. 2

Unprocessed experimental data of magnetic-field-dependent splitting of the ZBA (Fig. 2b–h).

Source Data Fig. 3a

STM data of the Cu(111) surface decorated with Fe islands, Nc molecules and Co atoms.

Source Data Fig. 3

Unprocessed experimental data and fits of spin-resolved measurements on Co/Cu(111).

Source Data Fig. 4

Calculated orbital-resolved LDOS and theoretical inelastic tunnelling spectra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedrich, F., Odobesko, A., Bouaziz, J. et al. Evidence for spinarons in Co adatoms. Nat. Phys. 20, 28–33 (2024). https://doi.org/10.1038/s41567-023-02262-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02262-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing