Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for an odd-parity nematic phase above the charge-density-wave transition in a kagome metal

Abstract

The search for quantum states arising from the interplay between correlation, frustration and topology is a central topic for condensed-matter physics. Recently discovered non-magnetic kagome metals AV3Sb5 (A = K, Cs or Rb) with charge-density-wave and superconducting instabilities may host such exotic states. Here we report evidence that an odd-parity electronic nematic state emerges at a higher temperature than the charge density wave in CsV3Sb5. Our torque measurements reveal a two-fold in-plane magnetic anisotropy that breaks the crystal rotational symmetry. Moreover, in the temperature range between the formation of the charge density wave and a nematic state, rotating an external magnetic field in a conical fashion yields a distinct first-order phase transition, indicating time-reversal symmetry breaking. These results provide thermodynamic evidence for the emergence of an odd-parity nematic order. In addition, elastoresistance shows no discernible anomalies near the onset of nematicity, consistent with the odd-parity order. These findings suggest that an exotic loop current state precedes the charge-density-wave transition in CsV3Sb5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure, experimental setup and magnetic anisotropy.
Fig. 2: In-plane variation in magnetic torque.
Fig. 3: Elastoresistance and nematic susceptibility.
Fig. 4: Broken time-reversal symmetry and loop current orders.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available via Figshare at https://doi.org/10.6084/m9.figshare.23557737. Source data are provided with this paper.

References

  1. Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019).

    Article  Google Scholar 

  2. Ortiz, B. R. et al. CsV3Sb5: a Z2 topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).

    Article  ADS  Google Scholar 

  3. Ortiz, B. R. et al. Superconductivity in the Z2 kagome metal KV3Sb5. Phys. Rev. Mater. 5, 034801 (2021).

    Article  Google Scholar 

  4. Zhou, X. et al. Origin of charge density wave in the kagome metal CsV3Sb5 as revealed by optical spectroscopy. Phys. Rev. B 104, L041101 (2021).

    Article  ADS  Google Scholar 

  5. Kang, M. et al. Twofold Van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5. Nat. Phys. 18, 301–308 (2022).

    Article  Google Scholar 

  6. Park, T., Ye, M. & Balents, L. Electronic instabilities of kagome metals: saddle points and Landau theory. Phys. Rev. B 104, 035142 (2021).

    Article  ADS  Google Scholar 

  7. Tazai, R., Yamakawa, Y. & Kontani, H. Charge-loop current order and Z3 nematicity mediated by bond-order fluctuations in kagome metal AV3Sb5 (A = Cs, Rb, K). Preprint at https://arxiv.org/abs/2207.08068 (2022).

  8. Varma, C. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554 (1997).

    Article  ADS  Google Scholar 

  9. Li, Y. et al. Unusual magnetic order in the pseudogap region of the superconductor HgBa2CuO4+δ. Nature 455, 372–375 (2008).

    Article  ADS  Google Scholar 

  10. Pershoguba, S. S., Kechedzhi, K. & Yakovenko, V. M. Proposed chiral texture of the magnetic moments of unit-cell loop currents in the pseudogap phase of cuprate superconductors. Phys. Rev. Lett. 111, 047005 (2013).

    Article  ADS  Google Scholar 

  11. Zhao, L. et al. Evidence of an odd-parity hidden order in a spin–orbit coupled correlated iridate. Nat. Phys. 12, 32–36 (2016).

    Article  Google Scholar 

  12. Jeong, J., Sidis, Y., Louat, A., Brouet, V. & Bourges, P. Time-reversal symmetry breaking hidden order in Sr2(Ir, Rh)O4. Nat. Commun. 8, 15119 (2017).

    Article  ADS  Google Scholar 

  13. Murayama, H. et al. Bond directional anapole order in a spin-orbit coupled Mott insulator Sr2(Ir1−xRhx)O4. Phys. Rev. X 11, 011021 (2021).

    Google Scholar 

  14. Tan, H., Liu, Y., Wang, Z. & Yan, B. Charge density waves and electronic properties of superconducting kagome metals. Phys. Rev. Lett. 127, 046401 (2021).

    Article  ADS  Google Scholar 

  15. Tazai, R., Yamakawa, Y., Onari, S. & Kontani, H. Mechanism of exotic density-wave and beyond-Migdal unconventional superconductivity in kagome metal AV3Sb5 (A = K, Rb, Cs). Sci. Adv. 8, eabl4108 (2022).

    Article  ADS  Google Scholar 

  16. Roppongi, M. et al. Bulk evidence of anisotropic s-wave pairing with no sign change in the kagome superconductor CsV3Sb5. Nat. Commun. 14, 667 (2023).

    Article  ADS  Google Scholar 

  17. Xiang, Y. et al. Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field. Nat. Commun. 12, 6727 (2021).

    Article  ADS  Google Scholar 

  18. Nie, L. et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor. Nature 604, 59–64 (2022).

    Article  ADS  Google Scholar 

  19. Yu, L. et al. Evidence of a hidden flux phase in the topological kagome metal CsV3Sb5. Preprint at https://arxiv.org/abs/2107.10714 (2021).

  20. Sur, Y., Kim, K.-T., Kim, S. & Kim, K. H. Optimized superconductivity in the vicinity of a nematic quantum critical point in the kagome superconductor Cs(V1−xTix)3Sb5. Nat. Commun. 14, 3899 (2023).

    Article  ADS  Google Scholar 

  21. Yang, S.-Y. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 6, eabb6003 (2020).

    Article  ADS  Google Scholar 

  22. Yu, F. et al. Concurrence of anomalous Hall effect and charge density wave in a superconducting topological kagome metal. Phys. Rev. B 104, L041103 (2021).

    Article  ADS  Google Scholar 

  23. Guo, C. et al. Switchable chiral transport in charge-ordered kagome metal CsV3Sb5. Nature 611, 461–466 (2022).

  24. Hu, Y. et al. Time-reversal symmetry breaking in charge density wave of CsV3Sb5 detected by polar Kerr effect. Preprint at https://arxiv.org/abs/2208.08036 (2022).

  25. Xu, Y. et al. Three-state nematicity and magneto-optical Kerr effect in the charge density waves in kagome superconductors. Nat. Phys. 18, 1470–1475 (2022).

  26. Saykin, D. R. et al. High resolution polar Kerr effect studies of CsV3Sb5: tests for time reversal symmetry breaking below the charge order transition. https://doi.org/10.1103/PhysRevLett.131.016901

  27. Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).

    Article  ADS  Google Scholar 

  28. Li, H. et al. No observation of chiral flux current in the topological kagome metal CsV3Sb5. Phys. Rev. B 105, 045102 (2022).

    Article  ADS  Google Scholar 

  29. Christensen, M. H., Birol, T., Andersen, B. M. & Fernandes, R. M. Loop currents in A V 3 Sb 5 kagome metals: Multipolar and toroidal magnetic orders. Phys. Rev. B 106, 144504 (2022).

    Article  ADS  Google Scholar 

  30. Okazaki, R. et al. Rotational symmetry breaking in the hidden-order phase of URu2Si2. Science 331, 439–442 (2011).

    Article  ADS  Google Scholar 

  31. Chen, Q., Chen, D., Schnelle, W., Felser, C. & Gaulin, B. D. Charge density wave order and fluctuations above TCDW and below superconducting Tc in the kagome metal CsV3Sb5. Phys. Rev. Lett. 129, 056401 (2022).

    Article  ADS  Google Scholar 

  32. Sato, Y. et al. Thermodynamic evidence for a nematic phase transition at the onset of the pseudogap in YBa2Cu3Oy. Nat. Phys. 13, 1074–1078 (2017).

    Article  Google Scholar 

  33. Murayama, H. et al. Diagonal nematicity in the pseudogap phase of HgBa2CuO4+δ. Nat. Commun. 10, 3282 (2019).

    Article  ADS  Google Scholar 

  34. Kostylev, I., Yonezawa, S., Wang, Z., Ando, Y. & Maeno, Y. Uniaxial-strain control of nematic superconductivity in SrxBi2Se3. Nat. Commun. 11, 4152 (2020).

    Article  ADS  Google Scholar 

  35. Miao, H. et al. Geometry of the charge density wave in the kagome metal AV3Sb5. Phys. Rev. B 104, 195132 (2021).

    Article  ADS  Google Scholar 

  36. Holleis, L. et al. Anomalous and anisotropic nonlinear susceptibility in the proximate Kitaev magnet α-RuCl3. npj Quantum Mater. 6, 66 (2021).

    Article  ADS  Google Scholar 

  37. Chu, J.-H., Kuo, H.-H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012).

    Article  ADS  Google Scholar 

  38. Kuo, H.-H., Chu, J.-H., Palmstrom, J. C., Kivelson, S. A. & Fisher, I. R. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Science 352, 958–962 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  39. Kawaguchi, K., Onari, S. & Kontani, H. Spin-fluctuation-driven B1g and B2g bond order and induced in-plane anisotropy in magnetic susceptibility in cuprate superconductors: impact of hot-/cold-spot structure on bond-order symmetry. J. Phys. Soc. Jpn 89, 124704 (2020).

    Article  ADS  Google Scholar 

  40. Tazai, R., Yamakawa, Y. & Kontani, H. Drastic magnetic-field-induced chiral current order and emergent current-bond-field interplay in kagome metal AV3Sb5 (A = Cs, Rb, K). Preprint at https://arxiv.org/abs/2303.00623 (2023).

  41. Kautzsch, L. et al. Structural evolution of the kagome superconductors AV3Sb5 (A = K, Rb, and Cs) through charge density wave order. Phys. Rev. Mater. 7, 024806 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

A part of this work was supported by CREST (no. JPMJCR19T5; to Y.M. and T.S.) from the Japan Science and Technology (JST), Grants-in-Aid for Scientific Research (KAKENHI) (nos. 18H05227, 18H03680, 18H01180, 21K13881) and Grant-in-Aid for Scientific Research on innovative areas ‘Quantum Liquid Crystals’ (no. JP19H05824) from the Japan Society for the Promotion of Science (JSPS) (to T.S.). S.D.W. gratefully acknowledges support from the UC Santa Barbara NSF Quantum Foundry funded via the Q-AMASE-i program under award DMR-1906325. Work by B.R.O. was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division.

Author information

Authors and Affiliations

Authors

Contributions

T.A., T.S. and Y.M. conceived and supervised the study. T.A., T.K., K.O., S.S. and T.G. performed the torque measurements. A.O., Y. Kageyama and K.H. performed the elastoresistivity measurements. B.R.O., S.D.W., Q.L. and H.-H.W. synthesized the single crystals. T.A., A.O., Y. Kageyama, T.K., K.O. and K.H. analysed the data with inputs from S.S., Y. Kohsaka, Y. Kasahara and H.M. The theoretical models were provided by R.T. and H.K. All authors discussed the results and contributed to writing the manuscript.

Corresponding authors

Correspondence to T. Shibauchi or Y. Matsuda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Domenico Di Sante and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Sections I–III.

Source data

Source Data Fig. 1

Out-of-plane magnetic susceptibility data.

Source Data Fig. 2

In-plane magnetic torque data.

Source Data Fig. 3

Elastoresistance data.

Source Data Fig. 4

Magnetic torque data with conically rotated fields.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asaba, T., Onishi, A., Kageyama, Y. et al. Evidence for an odd-parity nematic phase above the charge-density-wave transition in a kagome metal. Nat. Phys. 20, 40–46 (2024). https://doi.org/10.1038/s41567-023-02272-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02272-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing