Research articles

Filter By:

  • Autonomous assembly, reconfiguration and disassembly are observed in living aggregates, but are difficult to replicate in synthetic soft matter. Here mechanically interlocked responsive ribbons form transient viscoelastic solids for the on-demand assembly of functional materials.

    • Mustafa K. Abdelrahman
    • Robert J. Wagner
    • Taylor H. Ware
    Article
  • Employing nonlinear, time-resolved terahertz spectroscopy to study condensate dynamics on Ta2NiSe5—a narrow-bandgap semiconductor and putative excitonic insulator—the authors reveal enhanced terahertz reflectivity upon photoexcitation and condensation-like temperature dependence below the structural transition critical temperature.

    • Sheikh Rubaiat Ul Haque
    • Marios H. Michael
    • Richard D. Averitt
    Article
  • The authors combine laser excitation and scanning tunnelling spectroscopy to visualize the electron and hole distributions in photoexcited moiré excitons in twisted bilayer WS2. This photocurrent tunnelling microscopy approach enables the study of photoexcited non-equilibrium moiré phenomena at atomic scales.

    • Hongyuan Li
    • Ziyu Xiang
    • Feng Wang
    Article
  • Plastic deformation requires the propagation of a kinked profile along dislocations. It is shown that each kink acts as a set of travelling thermal spikes, favouring the nucleation of supplementary kinks and long dislocation jumps that are observed experimentally.

    • Laurent Proville
    • Anshuman Choudhury
    Letter
  • The self-assembly of metallic nanoparticles on oxide supports via metal exsolution relies on dopant transport, but strong electrostatic gradients and space charges typically control the properties of surfaces. The surface–dopant interaction is shown to be the main determining factor for the exsolution kinetics of nickel in a perovskite system.

    • Moritz L. Weber
    • Břetislav Šmíd
    • Christian Lenser
    ArticleOpen Access
  • Porosity of zeolitic imidazolate frameworks can be preserved beyond glass transition and melt processing. Here centimetre-scale porous glasses are demonstrated, whereas liquid processing enables fine-tuning of the size of the gas-transporting channels for molecular sieving.

    • Oksana Smirnova
    • Seungtaik Hwang
    • Alexander Knebel
    ArticleOpen Access
  • Depositing textured functional materials on transparent conducting oxides remains a challenge. We demonstrate the formation of a coherent interface between a set of functional oxides and fluorine-doped-tin-oxide-based transparent conducting oxide substrate despite the lattice mismatch, owing to dimensional and chemical matching of oxygen sublattices at the interface.

    • Huiting Huang
    • Jun Wang
    • Zhigang Zou
    Article
  • Oxidation normally deteriorates the mechanical properties of metals. But it is now shown that the formation of a percolating oxide network in metallic glass nanotubes can result in an unprecedented superelasticity of 14% at room temperature.

    • Fucheng Li
    • Zhibo Zhang
    • Yong Yang
    Letter
  • Piezoelectrics have longitudinal and transverse piezoelectric coefficients that are opposite in sign. Here, by tuning the interface inversion asymmetry in heterostructures, auxetic systems with positive longitudinal and transverse coefficients are realized, with expansion or contraction along all directions in an electric field.

    • Ming-Min Yang
    • Tian-Yuan Zhu
    • Marin Alexe
    ArticleOpen Access
  • Optically stimulated vibrational control for materials has the potential to improve the performance of optoelectronic devices. The vibrational control of FAPbBr3 perovskite solar cells has been demonstrated, where the fast dynamics of coupling between cations and inorganic sublattice may suppress non-radiative recombinations in perovskites, leading to reduced voltage losses.

    • Nathaniel. P. Gallop
    • Dmitry R. Maslennikov
    • Artem A. Bakulin
    ArticleOpen Access
  • Early detection of electrical degradation in dielectric polymers is crucial but remains challenging. A general strategy of blending the polymer with chromogenic molecules is reported, which generates a visually discernible colour change as chemically activated by oxygen radicals generated in situ, indicating the early stage of electrical degradation in polymers.

    • Xiaoyan Huang
    • Shuai Zhang
    • Jinliang He
    Article
  • Current physical neuromorphic computing faces critical challenges of how to reconfigure key physical dynamics of a system to adapt computational performance to match a diverse range of tasks. Here the authors present a task-adaptive approach to physical neuromorphic computing based on on-demand control of computing performance using various magnetic phases of chiral magnets.

    • Oscar Lee
    • Tianyi Wei
    • Hidekazu Kurebayashi
    ArticleOpen Access
  • Chemical adsorption of CO on open metal sites enables separation from other gases but leads to selectivity and stability issues. Quasi-open metal sites in metal–organic frameworks are proposed here, which are accessible only by CO-induced structural transformation, enabling CO separation to 9N purity.

    • Xue-Wen Zhang
    • Chao Wang
    • Jie-Peng Zhang
    Article
  • Gold nanoclusters show promise as photothermal materials, but are often thermally unstable. Here ligand engineering is used to integrate molecular rotors with gold nanoclusters to dissipate thermal energy and improve photothermal therapy performance.

    • Jing Chen
    • Peilin Gu
    • Chunhai Fan
    Article