Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stacking textured films on lattice-mismatched transparent conducting oxides via matched Voronoi cell of oxygen sublattice

Abstract

Transparent conducting oxides are a critical component in modern (opto)electronic devices and solar energy conversion systems, and forming textured functional films on them is highly desirable for property manipulation and performance optimization. However, technologically important materials show varied crystal structures, making it difficult to establish coherent interfaces and consequently the oriented growth of these materials on transparent conducting oxides. Here, taking lattice-mismatched hexagonal α-Fe2O3 and tetragonal fluorine-doped tin oxide as the example, atomic-level investigations reveal that a coherent ordered structure forms at their interface, and via an oxygen-mediated dimensional and chemical-matching manner, that is, matched Voronoi cells of oxygen sublattices, [110]-oriented α-Fe2O3 films develop on fluorine-doped tin oxide. Further measurements of charge transport characteristics and photoelectronic effects highlight the importance and advantages of coherent interfaces and well-defined orientation in textured α-Fe2O3 films. Textured growth of lattice-mismatched oxides, including spinel Co3O4, fluorite CeO2, perovskite BiFeO3 and even halide perovskite Cs2AgBiBr6, on fluorine-doped tin oxide is also achieved, offering new opportunities to develop high-performance transparent-conducting-oxide-supported devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural measurements of α-Fe2O3 films deposited on FTO and fused silica glass.
Fig. 2: Dimensional matching of cations at the α-Fe2O3/FTO interface.
Fig. 3: Dimensional and chemical matching between α-Fe2O3(110) and SnO2(101).
Fig. 4: Out-of-plane conductivity in α-Fe2O3 films with [110] orientation and random orientation.
Fig. 5: Charge separation in α-Fe2O3 films with [110] orientation and random orientation.

Similar content being viewed by others

Data availability

All the relevant source data in this study are provided in the article and its Supplementary Information and are available from the corresponding authors upon request. Source data are provided with this paper.

Code availability

MTEX, a free MATLAB (R2018b) toolbox at https://mtex-toolbox.github.io/, is used to construct the pole figure and anisotropic electrical conductivity.

References

  1. Poeppelmeier, K. & Rondinelli, J. Mismatched lattices patched up. Nat. Chem. 8, 292–294 (2016).

    CAS  PubMed  Google Scholar 

  2. Carretero-Genevrier, A. et al. Soft-chemistry–based routes to epitaxial α-quartz thin films with tunable textures. Science 340, 827–831 (2013).

    ADS  CAS  PubMed  Google Scholar 

  3. Han, H. et al. Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control. Energy Environ. Sci. 11, 1299–1306 (2018).

    CAS  Google Scholar 

  4. Lei, Y. et al. Perovskite superlattices with efficient carrier dynamics. Nature 608, 317–323 (2022).

    ADS  CAS  PubMed  Google Scholar 

  5. Pandya, S. & Martin, L. Epitaxy on polycrystalline substrates. Science 358, 587–588 (2017).

    ADS  CAS  PubMed  Google Scholar 

  6. Edwards, P., Porch, A., Jones, M., Morgan, D. & Perks, R. Basic materials physics of transparent conducting oxides. Dalton Trans. 2995–3002 (2004).

  7. Kelso, M., Mahenderkar, N., Chen, Q., Tubbesing, J. & Switzer, J. Spin coating epitaxial films. Science 364, 166–169 (2019).

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  8. Chen, Y. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 577, 209–215 (2020).

    ADS  CAS  PubMed  Google Scholar 

  9. O’Sullivan, M. et al. Interface control by chemical and dimensional matching in an oxide heterostructure. Nat. Chem. 8, 347–353 (2016).

    MathSciNet  PubMed  Google Scholar 

  10. Sivula, K. & van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).

    ADS  CAS  Google Scholar 

  11. Wu, H. et al. Photocatalytic and photoelectrochemical systems: similarities and differences. Adv. Mater. 32, 1904717 (2020).

    CAS  Google Scholar 

  12. Grave, D. et al. Extraction of mobile charge carrier photogeneration yield spectrum of ultrathin-film metal oxide photoanodes for solar water splitting. Nat. Mater. 20, 833–840 (2021).

    ADS  CAS  PubMed  Google Scholar 

  13. Zhao, Y. et al. α-Fe2O3 as a versatile and efficient oxygen atom transfer catalyst in combination with H2O as oxygen source. Nat. Catal. 4, 684–691 (2021).

    CAS  Google Scholar 

  14. Zhang, H. et al. Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting. Nat. Commun. 11, 4622 (2020).

    ADS  PubMed  PubMed Central  Google Scholar 

  15. Souza, F., Lopes, K., Nascente, P. & Leite, E. Nanostructured hematite thin films produced by spin-coating deposition solution: application in water splitting. Sol. Energy Mater. Sol. Cells 93, 362–368 (2009).

    CAS  Google Scholar 

  16. Zhang, P. et al. Oriented Ti doped hematite thin film as active photoanodes synthesized by facile APCVD. Energy Environ. Sci. 4, 1020–1028 (2011).

    CAS  Google Scholar 

  17. Kay, A. et al. Wavelength dependent photocurrent of hematite photoanodes: reassessing the hole collection length. J. Phys. Chem. C 121, 28287–28292 (2017).

    CAS  Google Scholar 

  18. Warren, S. et al. Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842–849 (2013).

    ADS  CAS  PubMed  Google Scholar 

  19. Liu, P. et al. Grey hematite photoanodes decrease the onset potential in photoelectrochemical water oxidation. Sci. Bull. 66, 1013–1021 (2021).

    CAS  Google Scholar 

  20. Chakhalian, J., Millis, A. & Rondinelli, J. Whither the oxide interface. Nat. Mater. 11, 92–94 (2012).

    ADS  CAS  PubMed  Google Scholar 

  21. Feneberg, M. et al. Anisotropy of the electron effective mass in rutile SnO2 determined by infrared ellipsometry. Phys. Status Solidi A 211, 82–86 (2014).

    ADS  CAS  Google Scholar 

  22. Nakau, T. Electrical conductivity of α-Fe2O3. J. Phys. Soc. Jpn 15, 727 (1960).

    ADS  CAS  Google Scholar 

  23. Mainprice, D., Hielscher, R. & Schaeben, H. Calculating anisotropic physical properties from texture data using the MTEX open-source package. Deformation mechanisms, rheology and tectonics: microstructures, mechanics and anisotropy. Geol. Soc. Spec. Publ. 360, 175–192 (2011).

  24. Ilchenko, O. et al. Fast and quantitative 2D and 3D orientation mapping using Raman microscopy. Nat. Commun. 10, 5555 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hielscher, R., Schaeben, H. & Siemes, H. Orientation distribution within a single hematite crystal. Math. Geosci. 42, 395–375 (2010).

    Google Scholar 

  26. Marshall, C., Dufresne, W. & Rufledt, C. Polarized Raman spectra of hematite and assignment of external modes. J. Raman Spectrosc. 51, 1522–1529 (2020).

    ADS  CAS  Google Scholar 

  27. Lafuente, B., Downs, R., Yang, H. & Stone, N. in Highlights in Mineralogical Crystallography (eds Armbruster, T. & Danisi, R. M.) 1–30 (De Gruyter, 2016).

  28. Liu, Y. et al. Facet effect on the photoelectrochemical performance of a WO3/BiVO4 heterojunction photoanode. Appl. Catal. B 245, 227–239 (2019).

  29. Abe, E. Atomic-scale characterization of nanostructured metallic materials by HAADF/Z-contrast STEM. Mater. Trans. 44, 2035–2041 (2003).

    CAS  Google Scholar 

  30. Guo, S., Li, Q., Liu, P., Chen, M. & Zhou, H. Environmentally stable interface of layered oxide cathodes for sodium-ion batteries. Nat. Commun. 8, 135 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  31. Narayan, J. & Larson, B. Domain epitaxy: a unified paradigm for thin film growth. J. Appl. Phys. 93, 278–285 (2003).

    ADS  CAS  Google Scholar 

  32. Shi, E. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580, 614–620 (2020).

    ADS  CAS  PubMed  Google Scholar 

  33. Blatov, V. Voronoi–Dirichlet polyhedra in crystal chemistry: theory and applications. Crystallogr. Rev. 10, 249–318 (2004).

    CAS  Google Scholar 

  34. Mosca, M. & Kurlin, V. Voronoi-based similarity distances between arbitrary crystal lattices. Cryst. Res. Technol. 55, 1900197 (2020).

    CAS  Google Scholar 

  35. Zhang, Z. & Lagally, M. Atomistic processes in the early stages of thin-film growth. Science 276, 377–383 (1997).

    CAS  PubMed  Google Scholar 

  36. Fuseya, Y., Katsuno, H., Behnia, K. & Kapitulnik, A. Nanoscale Turing patterns in a bismuth monolayer. Nat. Phys. 17, 1031–1036 (2021).

    CAS  Google Scholar 

  37. Penn, R. & Banfield, J. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281, 969–971 (1998).

    ADS  CAS  PubMed  Google Scholar 

  38. Ivanov, V., Fedorov, P., Baranchikov, A. & Osiko, V. Oriented attachment of particles: 100 years of investigations of non-classical crystal growth. Russ. Chem. Rev. 83, 1204–1222 (2014).

    ADS  CAS  Google Scholar 

  39. Liu, Y. et al. Oriented attachment revisited: does a chemical reaction occur? Matter 1, 690–704 (2019).

    CAS  Google Scholar 

  40. Dai, Y., Lu, P., Cao, Z., Campbell, C. & Xia, Y. The physical chemistry and materials science behind sinter-resistant catalysts. Chem. Soc. Rev. 47, 4314–4331 (2018).

    CAS  PubMed  Google Scholar 

  41. Chen, R. et al. Charge separation via asymmetric illumination in photocatalytic Cu2O particles. Nat. Energy 3, 655–663 (2018).

    ADS  CAS  Google Scholar 

  42. Huda, M., Walsh, A., Yan, Y., Wei, S. & Al-Jassim, M. Electronic, structural, and magnetic effects of 3d transition metals in hematite. J. Appl. Phys. 107, 123712 (2010).

    ADS  Google Scholar 

  43. Kay, A. et al. Effect of doping and excitation wavelength on charge carrier dynamics in hematite by time-resolved microwave and terahertz photoconductivity. Adv. Funct. Mater. 30, 1901590 (2020).

    CAS  Google Scholar 

  44. Lv, X. et al. How titanium and iron are integrated into hematite to enhance the photoelectrochemical water oxidation: a review. Phys. Chem. Chem. Phys. 25, 1406–1420 (2023).

    CAS  PubMed  Google Scholar 

  45. Cheung, S. & Cheung, N. Extraction of Schottky diode parameters from forward current–voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986).

    ADS  CAS  Google Scholar 

  46. Smirnov, M., Baban, C. & Rusu, G. Structural and optical characteristics of spin-coated ZnO thin films. Appl. Surf. Sci. 256, 2405–2408 (2010).

    ADS  CAS  Google Scholar 

  47. Santato, C., Odziemkowski, M., Ulmann, M. & Augustyński, J. Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J. Am. Chem. Soc. 123, 10639–10649 (2001).

  48. Erwin, S., Gao, C., Roder, C., Lähnemann, J. & Brandt, O. Epitaxial interfaces between crystallographically mismatched materials. Phys. Rev. Lett. 107, 026102 (2011).

    ADS  PubMed  Google Scholar 

  49. Ding, H. et al. Computational approach for epitaxial polymorph stabilization through substrate selection. ACS Appl. Mater. Interfaces 8, 13086–13093 (2016).

    CAS  PubMed  Google Scholar 

  50. Thomas, J., Natarajan, A. & Van der Ven, A. Comparing crystal structures with symmetry and geometry. npj Comput. Mater. 7, 164 (2021).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank financial support from the National Science Fund for Distinguished Young Scholars (no. 22025202), National Key Research and Development Program of China (no. 2021YFA1502100), National Natural Science Foundation of China (nos. 51902153 and 51972165), Natural Science Foundation of Jiangsu Province of China (no. BK20202003), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the program B for Outstanding PhD candidate of Nanjing University.

Author information

Authors and Affiliations

Authors

Contributions

Z.L. supervised the project. J.F. and Z.L. conceived the research and designed the experiments. H.H., J.W. and M.Z. prepared the sample films, conducted the XRD characterization and analysed the pole figures. H.H., N.Z. and Y.H. measured and analysed the Raman spectra and TEM imaging. Y.L. and F.F. carried out the AFM characterization. H.H., Y.L. and F.F. analysed the IV curves and photovoltages of the sample films. H.H., J.F. and Z.L. discussed and analysed the lattice-matching paradigm. H.H. and M.Z. designed the energy device setup. H.H. and J.F. wrote the manuscript. All authors contributed to the analysis of the experimental data and revised the paper.

Corresponding authors

Correspondence to Jianyong Feng or Zhaosheng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Jagdish Narayan, Sheng Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Schematic illustration of structures and anisotropic electrical conductivities of (a) SnO2 and (b) α-Fe2O3.

The electrical conductivity along the trigonal axis/fourfold axis of α-Fe2O3/SnO2 (both denoted as \({\sigma }_{\perp (001)}\)) are served as the references based on literatures21,22. The anisotropic electrical conductivities are calculated in MTEX toolbox23.

Extended Data Fig. 2 Stacking of α-Fe2O3 (orange motifs) on SnO2 (blue motifs) at the sub-unit cell level.

Motifs of α-Fe2O3 (001) dimensionally match but chemically mismatch with those of SnO2 (101). While motifs of α-Fe2O3 (104) chemically match but dimensionally mismatch with those of SnO2 (101). Both dimensional and chemical matching are achieved between motifs of α-Fe2O3 (110) and SnO2 (101). Atomic arrangements of these models are shown in Supplementary Figs. 79.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Figs. 1–31 and Table 1.

Source data

Source Data Fig. 1

Statistical source data for Fig. 1.

Source Data Fig. 4

Statistical source data for Fig. 4.

Source Data Fig. 5

Statistical source data for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Wang, J., Liu, Y. et al. Stacking textured films on lattice-mismatched transparent conducting oxides via matched Voronoi cell of oxygen sublattice. Nat. Mater. 23, 383–390 (2024). https://doi.org/10.1038/s41563-023-01746-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01746-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing