Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autonomous indication of electrical degradation in polymers

Abstract

Dielectric polymers are ubiquitous as electrical insulation in electronic devices and electrical systems. Electrical degradation of dielectric polymers tends to initiate catastrophic failure of numerous devices and systems, but its detection and early warning remain challenging. Here we report a general material strategy that signals the electrical degradation of dielectric polymers by autonomously presenting a visually discernible warning in the form of a pronounced colour change. This colour change is induced by the chromogenic response of molecular indicators blended with the polymer, which are chemically activated by the oxygen radicals generated in situ during the electrical degradation of the polymer. We unveil that the structural degradation and electrical properties of the dielectric polymer are quantitatively correlated with the colour difference. Such a chromogenic process is autonomous without the need of human intervention or other external energy, thus offering the convenience to lower or even eliminate the risk of dielectric failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrical-degradation-indicating materials and free-radical-induced chromogenic mechanism.
Fig. 2: Chromogenic response of active PDMS/1 to electrical degradation.
Fig. 3: Correlation between electrical degradation and colour change.
Fig. 4: Visualization of electrical-tree-induced polymer degradation.

Similar content being viewed by others

Data availability

All data are available in the article or its Supplementary Information.

References

  1. Stark, K. H. & Garton, C. G. Electric strength of irradiated polythene. Nature 176, 1225–1226 (1955).

    Article  Google Scholar 

  2. Yang, Y. et al. Self-healing of electrical damage in polymers using superparamagnetic nanoparticles. Nat. Nanotechnol. 14, 151–155 (2019).

    Article  CAS  Google Scholar 

  3. Hackam, R. Outdoor HV composite polymeric insulators. IEEE Trans. Dielectr. Electr. Insul. 6, 557–585 (1999).

    Article  CAS  Google Scholar 

  4. Jarvid, M. et al. A new application area for fullerenes: voltage stabilizers for power cable insulation. Adv. Mater. 27, 897–902 (2015).

    Article  CAS  Google Scholar 

  5. Loo, J. S. C., Ooi, C. P. & Boey, F. Y. C. Degradation of poly(lactide-co-glycolide) (PLGA) and poly(l-lactide) (PLLA) by electron beam radiation. Biomaterials 26, 1359–1367 (2005).

    Article  CAS  Google Scholar 

  6. Uchida, K. & Shimizu, N. The effect of temperature and voltage on polymer chain scission in high-field region. IEEE Trans. Electr. Insul. 26, 271–277 (1991).

    Article  CAS  Google Scholar 

  7. Tafazoli, M. A study of on-orbit spacecraft failures. Acta Astronaut. 64, 195–205 (2009).

    Article  Google Scholar 

  8. Paulmier, T., Dirassen, B., Payan, D. & Eesbeek, M. V. Material charging in space environment: experimental test simulation and induced conductive mechanisms. IEEE Trans. Dielectr. Electr. Insul. 16, 682–688 (2009).

    Article  Google Scholar 

  9. Dissado, L. A. Theoretical basis for the statistics of dielectric breakdown. J. Phys. D 23, 1582–1591 (1990).

    Article  Google Scholar 

  10. Reynders, J. P., Jandrell, I. R. & Reynders, S. M. Review of aging and recovery of silicone rubber insulation for outdoor use. IEEE Trans. Dielectr. Electr. Insul. 6, 620–631 (1999).

    Article  CAS  Google Scholar 

  11. Zhang, B., Ghassemi, M. & Zhang, Y. Insulation materials and systems for power electronics modules: a review identifying challenges and future research needs. IEEE Trans. Dielectr. Electr. Insul. 28, 290–302 (2021).

    Article  CAS  Google Scholar 

  12. Gubanski, S. M. Modern outdoor insulation—concerns and challenges. IEEE Electr. Insul. Mag. 21, 5–11 (2005).

    Article  Google Scholar 

  13. Borghei, M. & Ghassemi, M. Insulation materials and systems for more- and all-electric aircraft: a review identifying challenges and future research needs. IEEE Trans. Transport. Electrific. 7, 1930–1953 (2021).

    Article  Google Scholar 

  14. Levchenko, I., Bazaka, K., Belmonte, T., Keidar, M. & Xu, S. Advanced materials for next-generation spacecraft. Adv. Mater. 30, 1802201 (2018).

    Article  Google Scholar 

  15. Chen, C., Luo, F. & Kang, Y. A review of SiC power module packaging: layout, material system and integration. CPSS Trans. Power Electron. Appl. 2, 170–186 (2017).

    Article  Google Scholar 

  16. Davis, D. A. et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459, 68–72 (2009).

    Article  CAS  Google Scholar 

  17. Chen, Y. et al. Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. Nat. Chem. 4, 559–562 (2012).

    Article  CAS  Google Scholar 

  18. Kosuge, T. et al. Multicolor mechanochromism of a polymer/silica composite with dual distinct mechanophores. J. Am. Chem. Soc. 141, 1898–1902 (2019).

    Article  CAS  Google Scholar 

  19. Patrick, J. F., Robb, M. J., Sottos, N. R., Moore, J. S. & White, S. R. Polymers with autonomous life-cycle control. Nature 540, 363–370 (2016).

    Article  CAS  Google Scholar 

  20. Rifaie-Graham, O., Apebende, E. A., Bast, L. K. & Bruns, N. Self-reporting fiber-reinforced composites that mimic the ability of biological materials to sense and report damage. Adv. Mater. 30, 1705483 (2018).

    Article  Google Scholar 

  21. Li, W. et al. Autonomous indication of mechanical damage in polymeric coatings. Adv. Mater. 28, 2189–2194 (2016).

    Article  CAS  Google Scholar 

  22. Di Credico, B., Griffini, G., Levi, M. & Turri, S. Microencapsulation of a UV-responsive photochromic dye by means of novel UV-screening polyurea-based shells for smart coating applications. ACS Appl. Mater. Interfaces 5, 6628–6634 (2013).

    Article  Google Scholar 

  23. Han, T., Liu, L., Wang, D., Yang, J. & Tang, B. Z. Mechanochromic fluorescent polymers enabled by AIE processes. Macromol. Rapid Commun. 42, 2000311 (2021).

    Article  CAS  Google Scholar 

  24. Dissado, L. A. Understanding electrical trees in solids: from experiment to theory. IEEE Trans. Dielectr. Electr. Insul. 9, 483–497 (2002).

    Article  Google Scholar 

  25. Venkatesulu, B. & Thomas, M. J. Corona aging studies on silicone rubber nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 17, 625–634 (2010).

    Article  CAS  Google Scholar 

  26. Boersma, A., Cangialosi, D. & Picken, S. J. Mobility and solubility of antioxidants and oxygen in glassy polymers. III. Influence of deformation and orientation on oxygen permeability. Polymer 44, 2463–2471 (2003).

    Article  CAS  Google Scholar 

  27. Shimizu, N. & Laurent, C. Electrical tree initiation. IEEE Trans. Dielectr. Electr. Insul. 5, 651–659 (1998).

    Article  Google Scholar 

  28. Hollahan, J. R. & Carlson, G. L. Hydroxylation of polymethylsiloxane surfaces by oxidizing plasmas. J. Appl. Polym. Sci. 14, 2499–2508 (1970).

    Article  CAS  Google Scholar 

  29. Malatesta, V., Millini, R. & Montanari, L. Key intermediate product of oxidative degradation of photochromic spirooxazines. X-ray crystal structure and electron spin resonance analysis of its 7,7,8,8-tetracyanoquinodimethane ion-radical salt. J. Am. Chem. Soc. 117, 6258–6264 (1995).

    Article  CAS  Google Scholar 

  30. Uznanski, P., Amiens, C., Donnadieu, B., Coppel, Y. & Chaudret, B. Oxidation of photochromic spirooxazines by coinage metal cations. Part I. Reaction with AgNO3: formation and characterisation of silver particles. New J. Chem. 25, 1486–1494 (2001).

    Article  CAS  Google Scholar 

  31. Malatesta, V. et al. Reductive degradation of photochromic spiro-oxazines. Reaction of the merocyanine forms with free radicals. J. Org. Chem. 60, 5446–5448 (1995).

    Article  CAS  Google Scholar 

  32. Kim, D.-H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).

    Article  CAS  Google Scholar 

  33. Pelrine, R., Kornbluh, R., Pei, Q. & Joseph, J. High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839 (2000).

    Article  CAS  Google Scholar 

  34. Kumagai, S. & Yoshimura, N. Polydimethylsiloxane and alumina trihydrate system subjected to dry-band discharges or high temperature part I: chemical structure. IEEE Trans. Dielectr. Electr. Insul. 11, 691–700 (2004).

    Article  CAS  Google Scholar 

  35. Korcek, S., Chenier, J. H. B., Howard, J. A. & Ingold, K. U. Absolute rate constants for hydrocarbon autoxidation. XXI. Activation energies for propagation and the correlation of propagation rate constants with carbon–hydrogen bond strengths. 100 Years CSC Pages CJC 01, 2285–2297 (2011).

    Google Scholar 

  36. Sharma, G., Wu, W. & Dalal, E. N. The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations. Color Res. Appl. 30, 21–30 (2005).

    Article  Google Scholar 

  37. Luo, M. R., Cui, G. & Rigg, B. The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Res. Appl. 26, 340–350 (2001).

    Article  Google Scholar 

  38. Lichtenberg, G. C. De nova methodo naturam ac motum fluidi electrici investigandi (Joann Christian Dieterich, 1778).

  39. Dissado, L. A., Dodd, S. J., Champion, J. V., Williams, P. I. & Alison, J. M. Propagation of electrical tree structures in solid polymeric insulation. IEEE Trans. Dielectr. Electr. Insul. 4, 259–279 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China grants 2018YFE0200100 (J. He, Q.L. and J. Hu) and the National Natural Science Foundation of China grants 51921005 (J. He and Q.L.). We thank G. Tian for her help with the UPLC-HRMS analysis and the isolation of activated indicators. We thank M. Zhou for her help with analysing the chemical structure of indolinooxazole (1′) by using NMR spectroscopy. We thank R. Hu for her help with the microscopic observation and elemental analysis of electro-degraded polymers by using SEM. We also thank Y. Xia, H. Yang and T. Tan for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Q.L. and J. He. conceived the idea. Q.L., X.H., S.Z., J. He, J. Hu, J.X., M.Y. and L.H. designed the experiments. X.H., S.Z. and P.Z. carried out the experiments. X.H. and Y.Z. performed the simulations. X.H., S.Z., P.Z., J.X., M.Y., L.H., Q.L., J. He and J. Hu analysed the data. Q.L., X.H., S.Z. and J. He wrote the paper. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Qi Li or Jinliang He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Gregory Sotzing, Daniel Q. Tan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8, Figs. 1–50, Schemes 1–7 and Tables 1–8.

Supplementary Video 1

ACN solution of spirooxazine (1) (left) and ACN solution of BPO (right) were preheated to 80 °C. After BPO/ACN was added to 1/ACN, the mixed solution immediately changed from light blue to yellow, indicating that the chromogenic reaction was instantaneously completed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Zhang, S., Zhang, P. et al. Autonomous indication of electrical degradation in polymers. Nat. Mater. 23, 237–243 (2024). https://doi.org/10.1038/s41563-023-01725-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01725-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing