Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomically precise photothermal nanomachines

Abstract

Interfacing molecular machines to inorganic nanoparticles can, in principle, lead to hybrid nanomachines with extended functions. Here we demonstrate a ligand engineering approach to develop atomically precise hybrid nanomachines by interfacing gold nanoclusters with tetraphenylethylene molecular rotors. When gold nanoclusters are irradiated with near-infrared light, the rotation of surface-decorated tetraphenylethylene moieties actively dissipates the absorbed energy to sustain the photothermal nanomachine with an intact structure and steady efficiency. Solid-state nuclear magnetic resonance and femtosecond transient absorption spectroscopy reveal that the photogenerated hot electrons are rapidly cooled down within picoseconds via electron–phonon coupling in the nanomachine. We find that the nanomachine remains structurally and functionally intact in mammalian cells and in vivo. A single dose of near-infrared irradiation can effectively ablate tumours without recurrence in tumour-bearing mice, which shows promise in the development of nanomachine-based theranostics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and characterization of an atomically precise PTG nanomachine with sustained photothermal conversion.
Fig. 2: Structural analysis of the interfacial interactions in the ligand monolayer of the atomically precise nanomachine.
Fig. 3: Rotation ability of the PTG nanomachine and its structural intactness under NIR irradiation.
Fig. 4: Operation of the PTG nanomachine under different working conditions.
Fig. 5: Photothermal conversion efficiency, pharmacokinetic profile and biodistribution of PTG NPs in mice.
Fig. 6: Efficacy of PTG-NP-based PTT treatment of tumours.

Similar content being viewed by others

Data availability

All data supporting the findings in this study are available within the Article and its Supplementary Information. Raw data of all the histology images are available via Figshare at https://figshare.com/s/83838f30afc8b88da550. The crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition number CCDC 2286681. Additional raw data generated in this study are available from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Ali, M. R. K. et al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc. Natl Acad. Sci. USA 114, E3110–E3118 (2017).

    Article  CAS  Google Scholar 

  2. Bao, X. et al. In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration. Light Sci. Appl. 7, 91 (2018).

    Article  Google Scholar 

  3. Shao, J. et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 7, 12967 (2016).

    Article  CAS  Google Scholar 

  4. Zhao, Z. et al. Highly efficient photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles. Nat. Commun. 10, 768 (2019).

    Article  CAS  Google Scholar 

  5. Nelidova, D. et al. Restoring light sensitivity using tunable near-infrared sensors. Science 368, 1108–1113 (2020).

    Article  CAS  Google Scholar 

  6. Psaltis, D., Quake, S. R. & Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006).

    Article  CAS  Google Scholar 

  7. Nam, S. et al. Graphene nanopore with a self-integrated optical antenna. Nano Lett. 14, 5584–5589 (2014).

    Article  CAS  Google Scholar 

  8. Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).

    Article  CAS  Google Scholar 

  9. Lukianova-Hleb, E. Y. et al. Intraoperative diagnostics and elimination of residual microtumours with plasmonic nanobubbles. Nat. Nanotechnol. 11, 525–532 (2016).

    Article  CAS  Google Scholar 

  10. Zeng, C., Chen, Y., Kirschbaum, K., Lambright, K. J. & Jin, R. Emergence of hierarchical structural complexities in nanoparticles and their assembly. Science 354, 1580–1584 (2016).

    Article  CAS  Google Scholar 

  11. Walter, M. et al. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl Acad. Sci. USA 105, 9157–9162 (2008).

    Article  CAS  Google Scholar 

  12. Du, B. et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12, 1096–1102 (2017).

    Article  CAS  Google Scholar 

  13. Loynachan, C. N. et al. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 14, 883–890 (2019).

    Article  CAS  Google Scholar 

  14. Peng, C. et al. Tuning the in vivo transport of anticancer drugs using renal-clearable gold nanoparticles. Angew. Chem. Int. Ed. 58, 8479–8483 (2019).

    Article  CAS  Google Scholar 

  15. Burgess, R. W. & Keast, V. J. TDDFT study of the optical absorption spectra of bare gold clusters. J. Phys. Chem. C 118, 3194–3201 (2014).

    Article  CAS  Google Scholar 

  16. Weng, B. et al. Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis. Nat. Commun. 9, 1543 (2018).

    Article  Google Scholar 

  17. Sun, J. et al. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat. Mater. 13, 1007–1012 (2014).

    Article  CAS  Google Scholar 

  18. Huxtable, S. T. et al. Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2, 731–734 (2003).

    Article  CAS  Google Scholar 

  19. Ong, W. L., Rupich, S. M., Talapin, D. V., McGaughey, A. J. H. & Malen, J. A. Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nat. Mater. 12, 410–415 (2013).

    Article  CAS  Google Scholar 

  20. O’Brien, P. J. et al. Bonding-induced thermal conductance enhancement at inorganic heterointerfaces using nanomolecular monolayers. Nat. Mater. 12, 118–122 (2013).

    Article  Google Scholar 

  21. Wan, X. K., Wang, J. Q., Nan, Z. A. & Wang, Q. M. Ligand effects in catalysis by atomically precise gold nanoclusters. Sci. Adv. 3, e1701823 (2017).

    Article  Google Scholar 

  22. Narouz, M. R. et al. N-heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem. 11, 419–425 (2019).

    Article  CAS  Google Scholar 

  23. Kang, X. & Zhu, M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 48, 2422–2457 (2019).

    Article  CAS  Google Scholar 

  24. Cao, Y. et al. Control of single-ligand chemistry on thiolated Au25 nanoclusters. Nat. Commun. 11, 5498 (2020).

    Article  CAS  Google Scholar 

  25. Huang, R. W. et al. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal–organic framework. Nat. Chem. 9, 689–697 (2017).

    Article  CAS  Google Scholar 

  26. García-López, V. et al. Molecular machines open cell membranes. Nature 548, 567–572 (2017).

    Article  Google Scholar 

  27. Van Dijk, L. et al. Molecular machines for catalysis. Nat. Rev. Chem. 2, 0117 (2018).

    Article  Google Scholar 

  28. Shao, J., Zhu, W., Zhang, X. & Zheng, Y. Molecular rotors with designed polar rotating groups possess mechanics-controllable wide-range rotational speed. npj Comput. Mater. 6, 185 (2020).

    Article  CAS  Google Scholar 

  29. Zhao, Z., Zhang, H., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: new vistas at the aggregate level. Angew. Chem. Int. Ed. 59, 9888–9907 (2020).

    Article  CAS  Google Scholar 

  30. Liu, S. et al. Structural and process controls of AIEgens for NIR-II theranostics. Chem. Sci. 12, 3427–3436 (2021).

    Article  CAS  Google Scholar 

  31. Würthner, F. Aggregation-induced emission (AIE): a historical perspective. Angew. Chem. Int. Ed. 59, 14192–14196 (2020).

    Article  Google Scholar 

  32. Delden, R. A. et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).

    Article  Google Scholar 

  33. Pollard, M. et al. Light-driven rotary molecular motors on gold nanoparticles. Chem. Eur. J. 14, 11610–11622 (2008).

    Article  CAS  Google Scholar 

  34. Shustova, N. B. et al. Phenyl ring dynamics in a tetraphenylethylene-bridged metal–organic framework: implications for the mechanism of aggregation-induced emission. J. Am. Chem. Soc. 134, 15061–15070 (2012).

    Article  CAS  Google Scholar 

  35. Pang, Z., Zhang, J., Cao, W., Kong, X. & Peng, X. Partitioning surface ligands on nanocrystals for maximal solubility. Nat. Commun. 10, 2454 (2019).

    Article  Google Scholar 

  36. Yang, Y. et al. Entropic ligands for nanocrystals: from unexpected solution properties to outstanding processability. Nano Lett. 16, 2133–2138 (2016).

    Article  CAS  Google Scholar 

  37. Li, Q. et al. A mono-cuboctahedral series of gold nanoclusters: photoluminescence origin, large enhancement, wide tunability, and structure–property correlation. J. Am. Chem. Soc. 141, 5314–5325 (2019).

    Article  CAS  Google Scholar 

  38. Yi, C. et al. Ligand- and solvent-dependent electronic relaxation dynamics of Au25(SR)18 monolayer-protected clusters. J. Phys. Chem. C 121, 24894–24902 (2017).

    Article  CAS  Google Scholar 

  39. Miller, S. A., Womick, J. M., Parker, J. F., Murray, R. W. & Moran, A. M. Femtosecond relaxation dynamics of Au25L18 monolayer-protected clusters. J. Phys. Chem. C 113, 9440–9444 (2009).

    Article  CAS  Google Scholar 

  40. Stoll, T. et al. Superatom state-resolved dynamics of the Au25(SC8H9)18 cluster from two-dimensional electronic spectroscopy. J. Am. Chem. Soc. 138, 1788–1791 (2016).

    Article  CAS  Google Scholar 

  41. Zhou, M. et al. Three-stage evolution from nonscalable to scalable optical properties of thiolate-protected gold nanoclusters. J. Am. Chem. Soc. 141, 19754–19764 (2019).

    Article  CAS  Google Scholar 

  42. Wang, J. Q. et al. Total structure determination of the largest alkynyl-protected fcc gold nanocluster Au110 and the study on its ultrafast excited-state dynamics. J. Am. Chem. Soc. 142, 18086–18092 (2020).

    Article  CAS  Google Scholar 

  43. Zhong, Y. et al. Suppression of kernel vibrations by layer-by-layer ligand engineering boosts photoluminescence efficiency of gold nanoclusters. Nat. Commun. 14, 658 (2023).

    Article  CAS  Google Scholar 

  44. Zhao, Z. et al. Non-aromatic annulene-based aggregation-induced emission system via aromaticity reversal process. Nat. Commun. 10, 2952 (2019).

    Article  Google Scholar 

  45. Van der Veen, R. M., Cannizzo, A., van Mourik, F., Vlček, A. & Chergui, M. Vibrational relaxation and intersystem crossing of binuclear metal complexes in solution. J. Am. Chem. Soc. 133, 305–315 (2011).

    Article  Google Scholar 

  46. Comotti, A. et al. Engineering switchable rotors in molecular crystals with open porosity. J. Am. Chem. Soc. 136, 618–621 (2014).

    Article  CAS  Google Scholar 

  47. Zhuang, Z. et al. Synthesis, aggregation-enhanced emission, polymorphism and piezochromism of TPE-cored foldamers with through-space conjugation. Chem. Commun. 52, 10842–10845 (2016).

    Article  CAS  Google Scholar 

  48. Zhu, Y. et al. Enantioseparation of Au20(PP3)4Cl4 clusters with intrinsically chiral cores. Angew. Chem. Int. Ed. 57, 9059–9063 (2018).

    Article  CAS  Google Scholar 

  49. Chen, J., Zhang, Q. F., Williard, P. G. & Wang, L. S. Synthesis and structure determination of a new Au20 nanocluster protected by tripodal tetraphosphine ligands. Inorg. Chem. 53, 3932–3934 (2014).

    Article  CAS  Google Scholar 

  50. Wu, X. et al. Thermal transport across surfactant layers on gold nanorods in aqueous solution. ACS Appl. Mater. Interfaces 8, 10581–10589 (2016).

    Article  CAS  Google Scholar 

  51. Soussi, J., Volz, S., Palpant, B. & Chalopin, Y. A detailed microscopic study of the heat transfer at a water gold interface coated with a polymer. Appl. Phys. Lett. 106, 093113 (2015).

    Article  Google Scholar 

  52. Li, X., Lovell, J. F., Yoon, J. & Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–674 (2020).

    Article  Google Scholar 

  53. Yi, X., Duan, Q. & Wu, F. Low-temperature photothermal therapy: strategies and applications. Research 2021, 9816594 (2021).

    Article  CAS  Google Scholar 

  54. Conde, J., Oliva, N., Zhang, Y. & Artzi, N. Local triple-combination therapy results in tumour regression and prevents recurrence in a colon cancer model. Nat. Mater. 15, 1128–1138 (2016).

    Article  CAS  Google Scholar 

  55. Chen, Y., Zhao, Y., Yoon, S. J., Gambhir, S. S. & Emelianov, S. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat. Nanotechnol. 14, 465–472 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Xu for help with the NMR data analysis. This work was financially supported by the National Key R&D Program of China (2020YFA0908104, to J.S.), the National Natural Science Foundation of China (21904087, to J.S.; 21834007, to C.F.; 21991134, to C.F.; 91953106, to J.S.; 21934007 and 92056117, to X.L.; 22022410, to Y. Zhu; 82050005, to Y. Zhu; T2188102, to C.F.), the Shanghai Municipal Science and Technology Commission (21QA1404800, to J.S.; 22JC1401203, to Y. Zhu; 20dz1101000 and 20dz1101001, to C.F.; 20dz1101002, to J.S.), Shenzhen Key Laboratory of Functional Aggregate Materials (ZDSYS20211021111400001, to B.Z.T), the Science Technology Innovation Commission of Shenzhen Municipality (KQTD20210811090142053, to B.Z.T) and the New Cornerstone Science Foundation (to C.F.).

Author information

Authors and Affiliations

Authors

Contributions

J.C. performed the synthesis of nanoclusters and analysed the spectroscopy results. P.G., Y. Zhang, Y. Zhu, Q.Y. and R.S. performed all the photothermal conversion and PTT experiments. B.C. and H.L. synthesized the alkynyl TPE. G.R. and W.Z. performed the transient absorption measurements. Y.-Z.H. and Z.T. performed the mass spectroscopy measurement. X.F. performed the NMR measurements. M.L., G.C., Z.S. and S.W. provided technical assistance on the NMR and transient absorption spectra studies. Y. Zhu, Y. Zhang, X.L., J.L. and L.W. technically assisted in the in vitro and in vivo experiments. J.S., B.Z.T. and C.F. conceived the project idea. Y. Zhu, J.S. and C.F. wrote the manuscript. J.S. and C.F. directed the project.

Corresponding authors

Correspondence to Ying Zhu, Jianlei Shen, Ben Zhong Tang or Chunhai Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Samuel Achilefu, James Tour and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–30, Tables 1–3, raw materials and methods.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data and unprocessed TEM and SEM images.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Gu, P., Ran, G. et al. Atomically precise photothermal nanomachines. Nat. Mater. 23, 271–280 (2024). https://doi.org/10.1038/s41563-023-01721-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01721-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing