Research articles

Filter By:

  • Unlike electron spins, nuclear spins in van der Waals materials remain a largely untapped quantum resource. Here we report the fast coherent control of nuclear spins and strong electron-mediated nuclear–nuclear spin coupling in hexagonal boron nitride.

    • Xingyu Gao
    • Sumukh Vaidya
    • Tongcang Li
  • The existence of fast dynamics in glass solids at low temperatures is attributed to liquid-like atoms that are inherited from high-temperature liquids and exhibit behaviour similar to that of atoms in liquid states.

    • C. Chang
    • H. P. Zhang
    • H. Y. Bai
  • Mechanical confinement of fibroblasts into micrometre-sized channels deforms the cell nucleus, leading to temporary nuclear lamina destablization and disassembly, loss of lamina-associated domains in chromatin and a decrease in histone and DNA methylation. These mechanically induced alterations in chromatin boost the conversion of fibroblasts into neurons and pluripotent stem cells and thus can be explored for cell engineering applications.

    • Yang Song
    • Jennifer Soto
    • Song Li
  • Two-dimensional materials can present ferroelectricity by layer sliding, but electrical confirmation is lacking due to narrow bandgaps. Here, a single-crystal coordination polymer with large bandgap enabling direct electrical measurement of PE hysteresis is shown to present sliding ferroelectricity.

    • Le-Ping Miao
    • Ning Ding
    • Yi Zhang
  • Desired for optical sensing or visual communications, structural colour-changing materials are hindered by the lack of scalable manufacturing. Here, by adapting Lippmann photography, large-area manufacturing of colour patterns in photosensitive elastomers is realized.

    • Benjamin Harvey Miller
    • Helen Liu
    • Mathias Kolle
  • Solid-state ionic conduction is a key enabler of electrochemical energy storage and conversion. A quantitative framework for ionic conduction between atomistic and macroscopic timescales in β- and β″-aluminas is now proposed for ‘atoms-to-device’ multiscale modelling and optimization.

    • Andrey D. Poletayev
    • James A. Dawson
    • Aaron M. Lindenberg
  • Heterostructures combine the unique properties of each constituent, improving the efficiency and stability of perovskite-based optoelectronic devices, yet the films suffer from poor compositional and structural uniformity. Here, the authors demonstrate a ligand-assisted welding process to fabricate a series of epitaxial 2D and 3D perovskite heterostructures.

    • Zhaohua Zhu
    • Chao Zhu
    • Wei Huang
  • Knowledge of band structure aids in understanding charge transport behaviour, yet it has proved impossible to measure the conduction (LUMO) band of organic semiconductors, in particular due to sample degradation by the electron beam. To address this, the authors developed and used AR-LEIPS to reveal the LUMO band dispersion of pentacene.

    • Haruki Sato
    • Syed A. Abd. Rahman
    • Hiroyuki Yoshida
  • Single-molecule electronics provide the potential solution for high-density integration and low-power consumption in massive data-driven applications, but have yet to be explored. Here, the authors report low-power logic-in-memory operations, based on single electric dipole flipping in the two-terminal single-metallofullerene device at room temperature.

    • Jing Li
    • Songjun Hou
    • Wenjing Hong
  • Colour centre emission from hexagonal boron nitride (hBN) holds promise for quantum technologies but activation and tuning are challenging. Here, the authors show twist-angle emission brightness tuning and external voltage brightness modulation at the twisted interface of hBN flakes.

    • Cong Su
    • Fang Zhang
    • Alex Zettl
  • Directed cell movement known as durotaxis, typically associated with cellular migration in response to a substrate gradient of increasing stiffness, is now shown to also occur in the opposite direction, following a gradient of decreasing stiffness.

    • Aleksi Isomursu
    • Keun-Young Park
    • David J. Odde