Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two-dimensional few-atom noble gas clusters in a graphene sandwich

Abstract

The van der Waals atomic solids of noble gases on metals at cryogenic temperatures were the first experimental examples of two-dimensional systems. Recently, such structures have also been created on surfaces under encapsulation by graphene, allowing studies at elevated temperatures through scanning tunnelling microscopy. However, for this technique, the encapsulation layer often obscures the arrangement of the noble gas atoms. Here we create Kr and Xe clusters in between two suspended graphene layers, and uncover their atomic structure through transmission electron microscopy. We show that small crystals (N < 9) arrange on the basis of the simple non-directional van der Waals interaction. Larger crystals show some deviations, possibly enabled by deformations in the encapsulating graphene lattice. We further discuss the dynamics of the clusters within the graphene sandwich, and show that although all the Xe clusters with up to N ≈ 100 remain solid, Kr clusters with already N ≈ 16 turn occasionally fluid under our experimental conditions (under a pressure of ~0.3 GPa). This study opens a way for the so-far unexplored frontier of encapsulated two-dimensional van der Waals solids with exciting possibilities for fundamental condensed-matter physics research and possible applications in quantum information technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of small clusters.
Fig. 2: Interatomic distances and 3D-to-2D transformation.
Fig. 3: Cluster migration.
Fig. 4: Structure of larger clusters.

Similar content being viewed by others

Data availability

All original data used for producing the presented results are available in the Supplementary Information and via the University of Vienna’s PHAIDRA repository at https://phaidra.univie.ac.at/detail/o:1438307 (ref. 32).

References

  1. Jortner, J., Meyer, L., Rice, S. A. & Wilson, E. G. Localized excitations in condensed Ne, Ar, Kr, and Xe. J. Chem. Phys. 42, 4250–4253 (1965).

    Article  CAS  Google Scholar 

  2. Cohen, P., Unguris, J. & Webb, M. Xe monolayer adsorption on Ag(111) I. Structural properties. Surf. Sci. 58, 429–456 (1976).

    Article  CAS  Google Scholar 

  3. Bäuerle, C., Mori, N., Kurata, G. & Fukuyama, H. Studies of 2D cryocrystals by STM techniques. J. Low Temp. Phys. 113, 927–932 (1998).

    Article  Google Scholar 

  4. Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Valerius, P. et al. Annealing of ion-irradiated hexagonal boron nitride on Ir(111). Phys. Rev. B 96, 235410 (2017).

    Article  Google Scholar 

  6. Herbig, C. & Michely, T. Graphene: the ultimately thin sputtering shield. 2D Mater. 3, 025032 (2016).

    Article  Google Scholar 

  7. Herbig, C. et al. Interfacial carbon nanoplatelet formation by ion irradiation of graphene on iridium(111). ACS Nano 8, 12208–12218 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Herbig, C. et al. Comment on ‘interfacial carbon nanoplatelet formation by ion irradiation of graphene on iridium(111)’. ACS Nano 9, 4664–4665 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Yoo, S. et al. Growth kinetics of Kr nano structures encapsulated by graphene. Nanotechnology 29, 385601 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Shiryaev, A. A., Trigub, A. L., Voronina, E. N., Kvashnina, K. O. & Bukhovets, V. L. Behavior of implanted Xe, Kr and Ar in nanodiamonds and thin graphene stacks: experiment and modeling. Phys. Chem. Chem. Phys. 23, 21729–21737 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Mangler, C. et al. A materials scientist’s CANVAS: a system for controlled alteration of nanomaterials in vacuum down to the atomic scale. Microsc. Microanal. 28, 2940–2942 (2022).

    Article  Google Scholar 

  12. Villarreal, R. et al. Breakdown of universal scaling for nanometer-sized bubbles in graphene. Nano Lett. 21, 8103–8110 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tripathi, M. et al. Cleaning graphene: comparing heat treatments in air and in vacuum. Phys. Status Solidi RRL 11, 1700124 (2017).

    Article  Google Scholar 

  14. Krivanek, O. L. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Vasu, K. S. et al. Van der Waals pressure and its effect on trapped interlayer molecules. Nat. Commun. 7, 12168 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lehtinen, O. et al. Effects of ion bombardment on a two-dimensional target: atomistic simulations of graphene irradiation. Phys. Rev. B 81, 153401 (2010).

    Article  Google Scholar 

  17. Trentino, A. et al. Atomic-level structural engineering of graphene on a mesoscopic scale. Nano Lett. 21, 5179–5185 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kotakoski, J., Eder, F. R. & Meyer, J. C. Atomic structure and energetics of large vacancies in graphene. Phys. Rev. B 89, 201406 (2014).

    Article  Google Scholar 

  19. Lusk, M. T. & Carr, L. D. Nanoengineering defect structures on graphene. Phys. Rev. Lett. 100, 175503 (2008).

    Article  PubMed  Google Scholar 

  20. Inani, H. et al. Silicon substitution in nanotubes and graphene via intermittent vacancies. J. Phys. Chem. C 123, 13136–13140 (2019).

    Article  CAS  Google Scholar 

  21. Kotakoski, J. et al. Stone-Wales-type transformations in carbon nanostructures driven by electron irradiation. Phys. Rev. B 83, 245420 (2011).

    Article  Google Scholar 

  22. Cretu, O. et al. Migration and localization of metal atoms on strained graphene. Phys. Rev. Lett. 105, 196102 (2010).

    Article  PubMed  Google Scholar 

  23. Young, D. A. Phase Diagrams of the Elements (Univ. of California Press, 1991).

  24. Meyer, J. C., Girit, C. O., Crommie, M. F. & Zettl, A. Hydrocarbon lithography on graphene membranes. Appl. Phys. Lett. 92, 123110 (2008).

    Article  Google Scholar 

  25. Madsen, J. Fourier-scale-calibration. GitHub https://github.com/jacobjma/fourier-scale-calibration (2022).

  26. Van derWalt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).

    Article  Google Scholar 

  27. Notay, Y. Flexible conjugate gradients. SIAM J. Sci. Comput. 22, 1444–1460 (2000).

    Article  Google Scholar 

  28. Rutkai, G., Thol, M., Span, R. & Vrabec, J. How well does the Lennard-Jones potential represent the thermodynamic properties of noble gases? Mol. Phys. 115, 1104–1121 (2017).

    Article  CAS  Google Scholar 

  29. Lorentz, H. A. Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Ann. Phys. 248, 127–136 (1881).

    Article  Google Scholar 

  30. Berthelot, D. Sur le mélange des gaz. C. R. Hebd. Seances Acad. Sci. 126, 1703–1855 (1898).

    Google Scholar 

  31. Stuart, S. J., Tutein, A. B. & Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000).

    Article  CAS  Google Scholar 

  32. Längle, M., Åhlgren, E. H. & Kotakoski, J. Original data ‘Two-dimensional few-atom noble gas clusters’. PHAIDRA https://phaidra.univie.ac.at/detail/o:1438307 (2023).

Download references

Acknowledgements

We acknowledge funding through the Austrian Science Fund (FWF) within projects P31605 (J.K.), P34797 (J.K.) and M2595 (E.H.Å.), as well as generous grants for computational resources from the Vienna Scientific Cluster.

Author information

Authors and Affiliations

Authors

Contributions

M.L. and J.K. designed the experiments. M.L. prepared the samples and carried out the ion irradiation with the help of K. Mizohata and E.H.Å. E.H.Å. carried out the molecular dynamics simulations and analysed the data together with J.K. M.L. and A.T. carried out the microscopy with help from C.M., K. Mustonen and J.K. M.L. and J.K. analysed the experimental data, plotted the figures and wrote the first draft. All authors were involved in writing the manuscript. J.K. supervised the project.

Corresponding authors

Correspondence to Manuel Längle or Jani Kotakoski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Feng Ding, Rahul Raveendran Nair and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10.

Supplementary Video 1

Video showing all the images of the image series related to Fig. 3.

Supplementary Video 2

Video showing all the images of the image series related to the Kr structure shown in Fig. 4.

Supplementary Video 3

Video showing all the images of the image series related to the Xe structure shown in Fig. 4.

Supplementary Video 4

Video showing all the images of the image series related to the first part of Supplementary Fig. 5.

Supplementary Video 5

Video showing all the images of the image series related to the second part of Supplementary Fig. 5.

Supplementary Video 6

Video showing all the images of the image series related to Supplementary Fig. 10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Längle, M., Mizohata, K., Mangler, C. et al. Two-dimensional few-atom noble gas clusters in a graphene sandwich. Nat. Mater. (2024). https://doi.org/10.1038/s41563-023-01780-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-023-01780-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing