Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly anisotropic spin transport in ultrathin black phosphorus

Abstract

In anisotropic crystals, the direction-dependent effective mass of carriers can have a profound impact on spin transport dynamics. The puckered crystal structure of black phosphorus leads to direction-dependent charge transport and optical response, suggesting that it is an ideal system for studying anisotropic spin transport. To this end, we fabricate and characterize high-mobility encapsulated ultrathin black-phosphorus-based spin valves in a four-terminal geometry. Our measurements show that in-plane spin lifetimes are strongly gate tunable and exceed one nanosecond. Through high out-of-plane magnetic fields, we observe a fivefold enhancement in the out-of-plane spin signal case compared to in-plane and estimate a colossal spin-lifetime anisotropy of 6. This finding is further confirmed by oblique Hanle measurements. Additionally, we estimate an in-plane spin-lifetime anisotropy ratio of up to 1.8. Our observation of strongly anisotropic spin transport along three orthogonal axes in this pristine material could be exploited to realize directionally tunable spin transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device fabrication and charge transport characterization.
Fig. 2: Nanosecond spin lifetimes and gate-dependent spin transport.
Fig. 3: Anisotropic spin relaxation.
Fig. 4: Indication of spin dephasing near zero in-plane field.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during this study are available from the corresponding authors upon reasonable request.

References

  1. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Ribeiro-Soares, J., Almeida, R. M., Cançado, L. G., Dresselhaus, M. S. & Jorio, A. Group theory for structural analysis and lattice vibrations in phosphorene systems. Phys. Rev. B 91, 205421 (2015).

    Article  Google Scholar 

  4. Kurpas, M., Gmitra, M. & Fabian, J. Spin-orbit coupling and spin relaxation in phosphorene: intrinsic versus extrinsic effects. Phys. Rev. B 94, 155423 (2016).

    Article  Google Scholar 

  5. Kurpas, M., Gmitra, M. & Fabian, J. Spin properties of black phosphorus and phosphorene, and their prospects for spincalorics. J. Phys. Appl. Phys. 51, 174001 (2018).

    Article  Google Scholar 

  6. Avsar, A. et al. Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes. Nat. Phys. 13, 888–893 (2017).

    Article  CAS  Google Scholar 

  7. Carvalho, A. et al. Phosphorene: from theory to applications. Nat. Rev. Mater. 1, 16061 (2016).

    Article  CAS  Google Scholar 

  8. Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Kang, J. et al. Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors. Nano Lett. 16, 2580–2585 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Akahama, Y., Endo, S. & Narita, S. Electrical properties of black phosphorus single crystals. J. Phys. Soc. Jpn 52, 2148–2155 (1983).

    Article  CAS  Google Scholar 

  11. Ribeiro, H. B. et al. Unusual angular dependence of the Raman response in black phosphorus. ACS Nano 9, 4270–4276 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Lee, S. et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun. 6, 8573 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Li, P. & Appelbaum, I. Electrons and holes in phosphorene. Phys. Rev. B 90, 115439 (2014).

    Article  Google Scholar 

  14. Tombros, N. et al. Anisotropic spin relaxation in graphene. Phys. Rev. Lett. 101, 046601 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Raes, B. et al. Determination of the spin-lifetime anisotropy in graphene using oblique spin precession. Nat. Commun. 7, 11444 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sierra, J. F., Fabian, J., Kawakami, R. K., Roche, S. & Valenzuela, S. O. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 16, 856–868 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Avsar, A. et al. Colloquium: spintronics in graphene and other two-dimensional materials. Rev. Mod. Phys. 92, 021003 (2020).

    Article  CAS  Google Scholar 

  18. Garcia, J. H., Vila, M., Cummings, A. W. & Roche, S. Spin transport in graphene/transition metal dichalcogenide heterostructures. Chem. Soc. Rev. 47, 3359–3379 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Benítez, L. A. et al. Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature. Nat. Phys. 14, 303–308 (2018).

    Article  Google Scholar 

  20. Leutenantsmeyer, J. C., Ingla-Aynés, J., Fabian, J. & van Wees, B. J. Observation of spin-valley-coupling-induced large spin-lifetime anisotropy in bilayer graphene. Phys. Rev. Lett. 121, 127702 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Xu, J., Zhu, T., Luo, Y. K., Lu, Y.-M. & Kawakami, R. K. Strong and tunable spin-lifetime anisotropy in dual-gated bilayer graphene. Phys. Rev. Lett. 121, 127703 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, S. et al. Synthetic Rashba spin–orbit system using a silicon metal-oxide semiconductor. Nat. Mater. 20, 1228–1232 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Long, G. et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett. 16, 7768–7773 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Avsar, A. et al. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 9, 4138–4145 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Yamaguchi, T. et al. Electrical spin injection into graphene through monolayer hexagonal boron nitride. Appl. Phys. Express 6, 073001 (2013).

    Article  Google Scholar 

  26. Hsiao, Y., Chang, P.-Y., Fan, K.-L., Hsu, N.-C. & Lee, S.-C. Black phosphorus with a unique rectangular shape and its anisotropic properties. AIP Adv. 8, 105216 (2018).

    Article  Google Scholar 

  27. Avsar, A. et al. Van der Waals bonded Co/h-BN contacts to ultrathin black phosphorus devices. Nano Lett. 17, 5361–5367 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Fert, A. & Jaffrès, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64, 184420 (2001).

    Article  Google Scholar 

  29. Chen, X. et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 6, 7315 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Farzaneh, S. M. & Rakheja, S. Extrinsic spin-orbit coupling and spin relaxation in phosphorene. Phys. Rev. B 100, 245429 (2019).

    Article  CAS  Google Scholar 

  31. Fan, X., Singh, D. J. & Zheng, W. Valence band splitting on multilayer MoS2: mixing of spin–orbit coupling and interlayer coupling. J. Phys. Chem. Lett. 7, 2175–2181 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Chan, M. K. et al. Hyperfine interactions and spin transport in ferromagnet-semiconductor heterostructures. Phys. Rev. B 80, 161206 (2009).

    Article  Google Scholar 

  33. Li, P., Li, J., Qing, L., Dery, H. & Appelbaum, I. Anisotropy-driven spin relaxation in germanium. Phys. Rev. Lett. 111, 257204 (2013).

    Article  PubMed  Google Scholar 

  34. Zhou, X. et al. Effective g factor in black phosphorus thin films. Phys. Rev. B 95, 045408 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussions with J. Fabian and A. Ciarrocchi. A.A. acknowledges support by the National Research Foundation, Prime Minister’s Office, Singapore (NRFF14-2022-0083). B.Ö. acknowledges support by the National Research Foundation, Prime Minister’s Office, Singapore, under its Competitive Research Program (CRP award no. NRF-CRP22-2019-8), National Research Foundation Investigatorship (NRFI award no. NRF-NRFI2018-08), MOE-AcRF-Tier 2 (grant no. MOE-T2EP50220-0017), Ministry of Education, Singapore, under its Research Centre of Excellence award to the Institute for Functional Intelligent Materials (Project No. EDUNC-33-18-279-V12) and the Medium-Sized Centre Programme. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, and the JSPS KAKENHI (grant nos 21H05233 and 23H02052).

Author information

Authors and Affiliations

Authors

Contributions

A.A. and B.Ö. designed and coordinated the work. A.A. and J.Y.T. fabricated the samples. A.A. and J.L. performed transport measurements. L.C. and A.A. performed simulations. K.W. and T.T. grew the hBN and BP crystals. L.C., A.A. and B.Ö. analysed the results and wrote the paper with input from all authors.

Corresponding authors

Correspondence to Ahmet Avsar or Barbaros Özyilmaz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Juan-Carlos Rojas-Sánchez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cording, L., Liu, J., Tan, J.Y. et al. Highly anisotropic spin transport in ultrathin black phosphorus. Nat. Mater. 23, 479–485 (2024). https://doi.org/10.1038/s41563-023-01779-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01779-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing