Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Compensating losses in polariton propagation with synthesized complex frequency excitation

Abstract

Surface plasmon polaritons and phonon polaritons offer a means of surpassing the diffraction limit of conventional optics and facilitate efficient energy storage, local field enhancement and highsensitivity sensing, benefiting from their subwavelength confinement of light. Unfortunately, losses severely limit the propagation decay length, thus restricting the practical use of polaritons. While optimizing the fabrication technique can help circumvent the scattering loss of imperfect structures, the intrinsic absorption channel leading to heat production cannot be eliminated. Here, we utilize synthetic optical excitation of complex frequency with virtual gain, synthesized by combining the measurements made at multiple real frequencies, to compensate losses in the propagations of phonon polaritons with dramatically enhanced propagation distance. The concept of synthetic complex frequency excitation represents a viable solution to the loss problem for various applications including photonic circuits, waveguiding and plasmonic/phononic structured illumination microscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of loss-compensation for polariton propagation using synthetic wave of complex frequency.
Fig. 2: AFM (top left panel) and s-SNOM (other panels) imaging in the vicinity of an antenna on an MoO3 film that supports hyperbolic PhPs.
Fig. 3: Synthetic s-SNOM imaging with a complex frequency of \({\tilde{\boldsymbol{f}}}={\mathbf{(}}{\mathbf{910-6.5i}}{\mathbf{)}}\) cm−1 in different transient snapshots and at different synthesized real frequencies.
Fig. 4: Investigation of interference of PhPs from two different circular antennas on MoO3 flake.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within this Article and the Supplementary Information.

Code availability

The code that supports the findings of this study is available from the corresponding author upon reasonable request.

References

  1. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010).

    Article  CAS  Google Scholar 

  4. Basov, D. N., Fogler, M. M. & García De Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  PubMed  Google Scholar 

  5. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Wei, H., Wang, Z., Tian, X., Käll, M. & Xu, H. Cascaded logic gates in nanophotonic plasmon networks. Nat. Commun. 2, 387 (2011).

    Article  PubMed  Google Scholar 

  7. Fu, Y. et al. All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett. 12, 5784–5790 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).

    Article  PubMed  Google Scholar 

  10. Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Arakawa, E. T., Williams, M. W., Hamm, R. N. & Ritchie, R. H. Effect of damping on surface plasmon dispersion. Phys. Rev. Lett. 31, 1127–1129 (1973).

    Article  CAS  Google Scholar 

  13. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J.-Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Yang, X. et al. Nanomaterial-based plasmon-enhanced infrared spectroscopy. Adv. Mater. 30, 1704896 (2018).

    Article  Google Scholar 

  17. Bylinkin, A. et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photon. 15, 197–202 (2021).

    Article  CAS  Google Scholar 

  18. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–538 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6, 6963 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Wei, F. & Liu, Z. Plasmonic structured illumination microscopy. Nano Lett. 10, 2531–2536 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photon. 7, 394–399 (2013).

    Article  CAS  Google Scholar 

  24. Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Anantha Ramakrishna, S. & Pendry, J. B. Removal of absorption and increase in resolution in a near-field lens via optical gain. Phys. Rev. B 67, 201101 (2003).

    Article  Google Scholar 

  26. Xiao, S. et al. Loss-free and active optical negative-index metamaterials. Nature 466, 735–738 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Hess, O. et al. Active nanoplasmonic metamaterials. Nat. Mater. 11, 573–584 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Stockman, M. I. Spaser action, loss compensation, and stability in plasmonic systems with gain. Phys. Rev. Lett. 106, 156802 (2011).

    Article  PubMed  Google Scholar 

  29. Pendry, J. B. & Maier, S. A. Comment on ‘Spaser action, loss compensation, and stability in plasmonic systems with gain’. Phys. Rev. Lett. 107, 259703 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Wuestner, S., Pusch, A., Tsakmakidis, K. L., Hamm, J. M. & Hess, O. Comment on ‘Spaser action, loss compensation, and stability in plasmonic systems with gain’. Phys. Rev. Lett. 107, 259701 (2011).

    Article  PubMed  Google Scholar 

  31. Archambault, A., Besbes, M. & Greffet, J. J. Superlens in the time domain. Phys. Rev. Lett. 109, 097405 (2012).

    Article  PubMed  Google Scholar 

  32. Guan, F. et al. Overcoming losses in superlenses with synthetic waves of complex frequency. Science 771, 766–771 (2023).

    Article  Google Scholar 

  33. Kim, S., Peng, Y., Yves, S. & Alù, A. Loss compensation and super-resolution with excitations at complex frequencies. Phys. Rev. X 13, 041024 (2023).

    CAS  Google Scholar 

  34. Tetikol, H. S. & Aksun, M. I. Enhancement of resolution and propagation length by sources with temporal decay in plasmonic devices. Plasmonics 15, 2137–2146 (2020).

    Article  CAS  Google Scholar 

  35. Kirby, E. I., Hamm, J. M., Pickering, T. W., Tsakmakidis, K. L. & Hess, O. Evanescent gain for slow and stopped light in negative refractive index heterostructures. Phys. Rev. B 84, 041103 (2011).

    Article  Google Scholar 

  36. Ciattoni, A., Marini, A., Rizza, C., Scalora, M. & Biancalana, F. Polariton excitation in epsilon-near-zero slabs: transient trapping of slow light. Phys. Rev. A 87, 053853 (2013).

    Article  Google Scholar 

  37. Tsakmakidis, K. L., Pickering, T. W., Hamm, J. M., Page, A. F. & Hess, O. Completely stopped and dispersionless light in plasmonic waveguides. Phys. Rev. Lett. 112, 167401 (2014).

    Article  PubMed  Google Scholar 

  38. Tsakmakidis, K. L., Baskourelos, K. G. & Wartak, M. S. Metamaterials and Nanophotonics (World Scientific, 2022).

  39. Baranov, D. G., Krasnok, A. & Alù, A. Coherent virtual absorption based on complex zero excitation for ideal light capturing. Optica 4, 1457–1461 (2017).

    Article  Google Scholar 

  40. Kim, S., Lepeshov, S., Krasnok, A. & Alù, A. Beyond bounds on light scattering with complex frequency excitations. Phys. Rev. Lett. 129, 203601 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Li, H., Mekawy, A., Krasnok, A. & Alù, A. Virtual parity-time symmetry. Phys. Rev. Lett. 124, 193901 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Gu, Z. et al. Transient non-Hermitian skin effect. Nat. Commun. 13, 7668 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, N. et al. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nat. Mater. 20, 43–48 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1130 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photon. 9, 674–678 (2015).

    Article  CAS  Google Scholar 

  46. Kurman, Y. et al. Spatiotemporal imaging of 2D polariton wave packet dynamics using free electrons. Science 372, 1181–1186 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Guo, X. et al. Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes. Nat. Nanotechnol. 18, 529–534 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Zheng, Z. et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater. 30, 1705318 (2018).

    Article  Google Scholar 

  49. Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Guo, X. et al. Mid-infrared analogue polaritonic reversed Cherenkov radiation in natural anisotropic crystals. Nat. Commun. 14, 2532 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, M. et al. Spin–orbit-locked hyperbolic polariton vortices carrying reconfigurable topological charges. eLight 2, 12 (2022).

    Article  CAS  Google Scholar 

  53. Hu, C. et al. Source-configured symmetry-broken hyperbolic polaritons. eLight 3, 14 (2023).

    Article  Google Scholar 

  54. Huang, W. et al. In-plane hyperbolic polariton tuners in terahertz and long-wave infrared regimes. Nat. Commun. 14, 2716 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by New Cornerstone Science Foundation and the Research Grants Council of Hong Kong, AoE/P-701/20, 17315522, A-HKU705/21 (to Shuang Zhang), the National Natural Science Foundation of China (51925203 to Q.D.; 52022025 to X.Y. and 52102160 to X.G.) and the Young Elite Scientists Sponsorship Program by CAST, 2022QNRC001 (to X.G.).

Author information

Authors and Affiliations

Authors

Contributions

Shuang Zhang, F.G., Q.D. and X.G. conceived the project. F.G. and X.G. designed the experiments. X.G. and Shu Zhang prepared the experimental samples and performed the s-SNOM experiments with the help of C.W.; F.G. and X.G. analysed the experimental data and performed the simulation. F.G., X.G., Shu Zhang, K.Z., Y.H., Y.X., S. Zhou, X.Y., Q.D. and Shuang Zhang participated in the analysis of the results. F.G., X.G. and Shuang Zhang wrote the manuscript with input from all authors. Shuang Zhang and Q.D. supervised the overall projects. All authors contributed to the discussion.

Corresponding authors

Correspondence to Qing Dai or Shuang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–4 and Figs. 1–11.

Supplementary Video 1

Wave propagation video.

Supplementary Video 2

Wave propagation video.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, F., Guo, X., Zhang, S. et al. Compensating losses in polariton propagation with synthesized complex frequency excitation. Nat. Mater. 23, 506–511 (2024). https://doi.org/10.1038/s41563-023-01787-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01787-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing