Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Field-free switching of perpendicular magnetization by two-dimensional PtTe2/WTe2 van der Waals heterostructures with high spin Hall conductivity

Abstract

The key challenge of spin–orbit torque applications lies in exploring an excellent spin source capable of generating out-of-plane spins while exhibiting high spin Hall conductivity. Here we combine PtTe2 for high spin conductivity and WTe2 for low crystal symmetry to satisfy the above requirements. The PtTe2/WTe2 bilayers exhibit a high in-plane spin Hall conductivity σs,y ≈ 2.32 × 105 × ħ/2e Ω–1 m–1 and out-of-plane spin Hall conductivity σs,z ≈ 0.25 × 105 × ħ/2e Ω–1 m–1, where ħ is the reduced Planck’s constant and e is the value of the elementary charge. The out-of-plane spins in PtTe2/WTe2 bilayers enable the deterministic switching of perpendicular magnetization at room temperature without magnetic fields, and the power consumption is 67 times smaller than that of the Pt control case. The high out-of-plane spin Hall conductivity is attributed to the conversion from in-plane spin to out-of-plane spin, induced by the crystal asymmetry of WTe2. Our work establishes a low-power perpendicular magnetization manipulation based on wafer-scale two-dimensional van der Waals heterostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal symmetry and SOT of the WTe2 layer.
Fig. 2: Crystal symmetry and SOT in PtTe2.
Fig. 3: Deterministic current-induced magnetization switching in PtTe2 (d)/WTe2 (8 – d)/CoFeB heterostructures.
Fig. 4: Spin Hall conductivity of PtTe2/WTe2 bilayers.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from H.Y. (experiment) or K.-J.L. (theory) upon reasonable request.

Code availability

The codes that calculate non-equilibrium spin densities can be accessed from K.-J.L. upon reasonable request.

References

  1. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Article  Google Scholar 

  2. Emori, S., Bauer, U., Ahn, S. M., Martinez, E. & Beach, G. S. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    Article  CAS  Google Scholar 

  3. Haazen, P. P. et al. Domain wall depinning governed by the spin Hall effect. Nat. Mater. 12, 299–303 (2013).

    Article  CAS  Google Scholar 

  4. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  5. Baek, S. C. et al. Spin currents and spin–orbit torques in ferromagnetic trilayers. Nat. Mater. 17, 509–513 (2018).

    Article  CAS  Google Scholar 

  6. Liu, Y. & Shao, Q. Two-dimensional materials for energy-efficient spin–orbit torque devices. ACS Nano 14, 9389–9407 (2020).

    Article  CAS  Google Scholar 

  7. Stiehl, G. M. et al. Layer-dependent spin-orbit torques generated by the centrosymmetric transition metal dichalcogenide β−MoTe2. Phys. Rev. B 100, 184402 (2019).

    Article  CAS  Google Scholar 

  8. Song, P. et al. Coexistence of large conventional and planar spin Hall effect with long spin diffusion length in a low-symmetry semimetal at room temperature. Nat. Mater. 19, 292–298 (2020).

    Article  CAS  Google Scholar 

  9. Liu, L. et al. Symmetry-dependent field-free switching of perpendicular magnetization. Nat. Nanotechnol. 16, 277–282 (2021).

    Article  Google Scholar 

  10. Stiehl, G. M. et al. Current-induced torques with Dresselhaus symmetry due to resistance anisotropy in 2D materials. ACS Nano 13, 2599–2605 (2019).

    CAS  Google Scholar 

  11. MacNeill, D. et al. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300–305 (2017).

    Article  CAS  Google Scholar 

  12. MacNeill, D. et al. Thickness dependence of spin-orbit torques generated by WTe2. Phys. Rev. B 96, 054450 (2017).

    Article  Google Scholar 

  13. Shi, S. et al. All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures. Nat. Nanotechnol. 14, 945–949 (2019).

    Article  CAS  Google Scholar 

  14. Shi, S. et al. Observation of the out‐of‐plane polarized spin current from CVD grown WTe2. Adv. Quantum Technol. 4, 2100038 (2021).

    Article  CAS  Google Scholar 

  15. Xie, Q. et al. Field-free magnetization switching induced by the unconventional spin–orbit torque from WTe2. APL Mater. 9, 051114 (2021).

    Article  CAS  Google Scholar 

  16. Kao, I. H. et al. Deterministic switching of a perpendicularly polarized magnet using unconventional spin–orbit torques in WTe2. Nat. Mater. 21, 1029–1034 (2022).

    Article  CAS  Google Scholar 

  17. Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

    Article  CAS  Google Scholar 

  18. DC, M. et al. Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1–x) films. Nat. Mater. 17, 800–807 (2018).

    Article  CAS  Google Scholar 

  19. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Article  Google Scholar 

  20. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

  21. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  22. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  Google Scholar 

  23. Sierra, J. F., Fabian, J., Kawakami, R. K., Roche, S. & Valenzuela, S. O. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 16, 856–868 (2021).

    Article  CAS  Google Scholar 

  24. Yang, H. et al. Two-dimensional materials prospects for non-volatile spintronic memories. Nature 606, 663–673 (2022).

    Article  CAS  Google Scholar 

  25. Fang, D. et al. Spin–orbit-driven ferromagnetic resonance. Nat. Nanotechnol. 6, 413–417 (2011).

    Article  CAS  Google Scholar 

  26. Chen, X. et al. Observation of the antiferromagnetic spin Hall effect. Nat. Mater. 20, 800–804 (2021).

    Article  CAS  Google Scholar 

  27. Xu, H. et al. High spin Hall conductivity in large-area type-II Dirac semimetal PtTe2. Adv. Mater. 32, e2000513 (2020).

    Article  Google Scholar 

  28. Zhu, L. et al. Strong damping‐like spin‐orbit torque and tunable Dzyaloshinskii–Moriya interaction generated by low‐resistivity Pd1−xPtx alloys. Adv. Funct. Mater. 29, 1805822 (2019).

    Article  Google Scholar 

  29. Lifshits, M. B. & Dyakonov, M. I. Swapping spin currents: interchanging spin and flow directions. Phys. Rev. Lett. 103, 186601 (2009).

    Article  Google Scholar 

  30. Saidaoui, H. B. & Manchon, A. Spin-swapping transport and torques in ultrathin magnetic bilayers. Phys. Rev. Lett. 117, 036601 (2016).

    Article  Google Scholar 

  31. Park, H. J. et al. Spin swapping effect of band structure origin in centrosymmetric ferromagnets. Phys. Rev. Lett. 129, 037202 (2022).

    Article  CAS  Google Scholar 

  32. Lin, W. et al. Evidence for spin swapping in an antiferromagnet. Nat. Phys. 18, 800–805 (2022).

    Article  CAS  Google Scholar 

  33. Valet, T. & Fert, A. Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B 48, 7099–7113 (1993).

    Article  CAS  Google Scholar 

  34. Haney, P. M., Lee, H.-W., Lee, K.-J., Manchon, A. & Stiles, M. D. Current induced torques and interfacial spin-orbit coupling: semiclassical modeling. Phys. Rev. B 87, 174411 (2013).

    Article  Google Scholar 

  35. Wang, Y., Deorani, P., Qiu, X., Kwon, J. H. & Yang, H. Determination of intrinsic spin Hall angle in Pt. Appl. Phys. Lett. 105, 152412 (2014).

    Article  Google Scholar 

  36. Shao, Q. et al. Roadmap of spin–orbit torques. IEEE Trans. Magn. 57, 800439 (2021).

    Article  CAS  Google Scholar 

  37. Guimaraes, M. H. D., Stiehl, G. M., MacNeill, D., Reynolds, N. D. & Ralph, D. C. Spin–orbit torques in NbSe2/permalloy bilayers. Nano Lett. 18, 1311–1316 (2018).

    Article  CAS  Google Scholar 

  38. Liang, S. et al. Spin-orbit torque magnetization switching in MoTe2/permalloy heterostructures. Adv. Mater. 32, e2002799 (2020).

    Article  Google Scholar 

  39. Nan, T. et al. Controlling spin current polarization through non-collinear antiferromagnetism. Nat. Commun. 11, 4671 (2020).

    Article  CAS  Google Scholar 

  40. Bose, A. et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electron. 5, 267–274 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the SpOT-LITE programme (A*STAR grant, A18A6b0057) through RIE2020 funds (H.Y.); the National Research Foundation (NRF) Singapore Investigatorship (NRFI06-2020-0015; H.Y.); Samsung Electronics’ University R&D programme, Samsung Electronics (IO221024-03172-01; H.Y.); the National Research Foundation of Korea (NRF-2020R1A2C3013302; K.-J.L.); the Nano & Material Technology Development Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (2022M3H4A1A04098811; K.-J.L.); and the KIST institutional programmes (2E32251 and 2E32252; K.-W.K.).

Author information

Authors and Affiliations

Authors

Contributions

F.W. and H.Y. conceived and designed the experiments. F.W., G.S. and S.Y. grew the samples. F.W. carried out the reflection high-energy electron diffraction, atomic force microscopy, transport and switching measurements and analysed the data. G.S. performed the ST-FMR measurements. D.Y. performed the Raman and terahertz measurements. K.L. carried out the X-ray diffraction measurements. G.S., Y.L. and S.Z. performed the device fabrications. H.R.T. and M.L. carried out the transmission electron microscopy measurements under the supervision of A.S.; K.-W.K. developed the analytic theories, and H.-J.P. and J.G.J. performed the first-principles calculations under the supervision of K.-J.L.; and T.K. performed the macro-spin simulations. F.W., H.Y., K.-W.K. and K.-J.L. wrote the manuscript with contributions from all authors. H.Y. supervised the experimental aspects, and K.-J.L. supervised the theoretical aspects. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Kyung-Jin Lee or Hyunsoo Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–37, Tables 1–5, Notes 1–13 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Shi, G., Kim, KW. et al. Field-free switching of perpendicular magnetization by two-dimensional PtTe2/WTe2 van der Waals heterostructures with high spin Hall conductivity. Nat. Mater. (2024). https://doi.org/10.1038/s41563-023-01774-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-023-01774-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing