Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photochemical tuning of dynamic defects for high-performance atomically dispersed catalysts

Abstract

Developing active and stable atomically dispersed catalysts is challenging because of weak non-specific interactions between catalytically active metal atoms and supports. Here we demonstrate a general method for synthesizing atomically dispersed catalysts via photochemical defect tuning for controlling oxygen-vacancy dynamics, which can induce specific metal–support interactions. The developed synthesis method offers metal-dynamically stabilized atomic catalysts, and it can be applied to reducible metal oxides, including TiO2, ZnO and CeO2, containing various catalytically active transition metals, including Pt, Ir and Cu. The optimized Pt-DSA/TiO2 shows unprecedentedly high photocatalytic hydrogen evolution activity, producing 164 mmol g−1 h−1 with a turnover frequency of 1.27 s−1. Furthermore, it generates 42.2 mmol gsub−1 of hydrogen via a non-recyclable-plastic-photoreforming process, achieving a total conversion of 98%; this offers a promising solution for mitigating plastic waste and simultaneously producing valuable energy sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DFT simulation of Ti3+ formation at VO.
Fig. 2: Characterization of Pt-DSA/TiO2.
Fig. 3: Generalization of the DSA synthesis method to other supports and metal atoms.
Fig. 4: Photocatalytic HER.
Fig. 5: Hydrogen generation by PET photoreforming.

Similar content being viewed by others

Data availability

All data that support the findings of this study are included in this Article. All other data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Zhou, P., Luo, M. & Guo, S. Optimizing the semiconductor–metal-single-atom interaction for photocatalytic reactivity. Nat. Rev. Chem. 6, 823–838 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    Article  CAS  Google Scholar 

  5. DeRita, L. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 18, 746–751 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Nie, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419–1423 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Cao, L. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565, 631–635 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Yang, H. B. et al. Atomically dispersed Ni (i) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

    Article  CAS  Google Scholar 

  9. Jung, E. et al. Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 19, 436–442 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Xu, H. et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 5, 623–632 (2020).

    Article  CAS  Google Scholar 

  11. Shan, J. et al. Integrating interactive noble metal single-atom catalysts into transition metal oxide lattices. J. Am. Chem. Soc. 144, 23214–23222 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Lee, B.-H. et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 18, 620–626 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Teng, Z. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 4, 374–384 (2021).

    Article  CAS  Google Scholar 

  14. Shan, J. et al. Metal-metal interactions in correlated single-atom catalysts. Sci. Adv. 8, eabo0762 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han, B. et al. Strong metal–support interactions between Pt single atoms and TiO2. Angew. Chem. Int. Ed. 59, 11824–11829 (2020).

    Article  CAS  Google Scholar 

  16. Wang, H. et al. High quantum efficiency of hydrogen production from methanol aqueous solution with PtCu–TiO2 photocatalysts. Nat. Mater. 22, 619–626 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, X. et al. A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature 589, 396–401 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Li, X. et al. Functional CeOx nanoglues for robust atomically dispersed catalysts. Nature 611, 284–288 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Wu, Z.-Y. et al. A general synthesis of single atom catalysts with controllable atomic and mesoporous structures. Nat. Synth. 1, 658–667 (2022).

    Article  Google Scholar 

  20. Zhang, Y. et al. Single-atom Cu anchored catalysts for photocatalytic renewable H2 production with a quantum efficiency of 56%. Nat. Commun. 13, 58 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu, F. et al. Engineering platinum–oxygen dual catalytic sites via charge transfer towards highly efficient hydrogen evolution. Angew. Chem. 132, 17865–17871 (2020).

    Article  Google Scholar 

  22. Chen, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem. 132, 1311–1317 (2020).

    Article  Google Scholar 

  23. Cargnello, M. et al. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 341, 771–773 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Daelman, N., Capdevila-Cortada, M. & López, N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 18, 1215–1221 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Matsubu, J. C. et al. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, K. et al. Strong metal-support interaction promoted scalable production of thermally stable single-atom catalysts. Nat. Commun. 11, 1263 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, B.-H. et al. Electronic interaction between transition metal single-atoms and anatase TiO2 boosts CO2 photoreduction with H2O. Energy Environ. Sci. 15, 601–609 (2022).

    Article  CAS  Google Scholar 

  28. Setvín, M. et al. Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101). Science 341, 988–991 (2013).

    Article  PubMed  Google Scholar 

  29. Chen, X., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Selcuk, S., Zhao, X. & Selloni, A. Structural evolution of titanium dioxide during reduction in high-pressure hydrogen. Nat. Mater. 17, 923–928 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Howe, R. F. & Gratzel, M. EPR study of hydrated anatase under UV irradiation. J. Phys. Chem. 91, 3906–3909 (1987).

    Article  CAS  Google Scholar 

  32. Strunk, J., Vining, W. C. & Bell, A. T. A study of oxygen vacancy formation and annihilation in submonolayer coverages of TiO2 dispersed on MCM-48. J. Phys. Chem. C 114, 16937–16945 (2010).

    Article  CAS  Google Scholar 

  33. Peper, J. L., Vinyard, D. J., Brudvig, G. W. & Mayer, J. M. Slow equilibration between spectroscopically distinct trap states in reduced TiO2 nanoparticles. J. Am. Chem. Soc. 139, 2868–2871 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Macino, M. et al. Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. Nat. Catal. 2, 873–881 (2019).

    Article  CAS  Google Scholar 

  35. Hejazi, S. et al. On the controlled loading of single platinum atoms as a Co‐catalyst on TiO2 anatase for optimized photocatalytic H2 generation. Adv. Mater. 32, 1908505 (2020).

    Article  CAS  Google Scholar 

  36. Wan, J. et al. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 30, 1705369 (2018).

    Article  Google Scholar 

  37. Drouilly, C. et al. ZnO oxygen vacancies formation and filling followed by in situ photoluminescence and in situ EPR. J. Phys. Chem. C 116, 21297–21307 (2012).

    Article  CAS  Google Scholar 

  38. Kim, H. H., Lee, H., Kang, J. K. & Choi, W. K. Photoluminescence and electron paramagnetic resonance spectroscopy for revealing visible emission of ZnO quantum dots. Ann. Phys. 534, 2100382 (2022).

    Article  CAS  Google Scholar 

  39. Wang, L. et al. Oxygen vacancy clusters essential for the catalytic activity of CeO2 nanocubes for o-xylene oxidation. Sci. Rep. 7, 12845 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Murugan, B. & Ramaswamy, A. Defect-site promoted surface reorganization in nanocrystalline ceria for the low-temperature activation of ethylbenzene. J. Am. Chem. Soc. 129, 3062–3063 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Ji, S. et al. Chemical synthesis of single atomic site catalysts. Chem. Rev. 120, 11900–11955 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Uekert, T., Kuehnel, M. F., Wakerley, D. W. & Reisner, E. Plastic waste as a feedstock for solar-driven H2 generation. Energy Environ. Sci. 11, 2853–2857 (2018).

    Article  CAS  Google Scholar 

  43. Lee, W. H. et al. Floatable photocatalytic hydrogel nanocomposites for large-scale solar hydrogen production. Nat. Nanotechnol. 18, 754–762 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Uekert, T., Pichler, C. M., Schubert, T. & Reisner, E. Solar-driven reforming of solid waste for a sustainable future. Nat. Sustain. 4, 383–391 (2021).

    Article  Google Scholar 

  45. Zhang, S. et al. Boosted photoreforming of plastic waste via defect-rich NiPS3 nanosheets. J. Am. Chem. Soc. 145, 6410–6419 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Uekert, T., Kasap, H. & Reisner, E. Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst. J. Am. Chem. Soc. 141, 15201–15210 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Matsubara, M., Saniz, R., Partoens, B. & Lamoen, D. Doping anatase TiO2 with group V-b and VI-b transition metal atoms: a hybrid functional first-principles study. Phys. Chem. Chem. Phys. 19, 1945–1952 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Cargnello, M. et al. Engineering titania nanostructure to tune and improve its photocatalytic activity. Proc. Natl Acad. Sci. USA 113, 3966–3971 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ou, G. et al. Tuning defects in oxides at room temperature by lithium reduction. Nat. Commun. 9, 1302 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wei, T., Zhu, Y., Wu, Y., An, X. & Liu, L.-M. Effect of single-atom cocatalysts on the activity of faceted TiO2 photocatalysts. Langmuir 35, 391–397 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Institute for Basic Science (IBS-R006-D1) and the National Supercomputing Center with supercomputing resources (KSC-2022-CRE-0146).

Author information

Authors and Affiliations

Authors

Contributions

C.W.L. and B.-H.L. conceived the idea and designed the research. C.W.L., B.-H.L. and S.P. designed the experiments. C.W.L. and S.P. conducted the photocatalytic measurements and analysis. J. Han and M.K. performed the DFT calculations and analysis. C.W.L., Y.J., J. Heo, K.L., W.K. and S.Y. conducted the data acquisition for material characterization and the subsequent analysis. C.W.L., B.-H.L., S.P. and M.K. wrote the original paper. M.S.B., J.R., K.T.N. and T.H. reviewed and edited the paper. T.H. supervised the research.

Corresponding authors

Correspondence to Byoung-Hoon Lee, Minho Kim or Taeghwan Hyeon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Schematic illustration of synthesizing Pt-DSA/TiO2 by photochemical defect tuning process.

A schematic illustration with photographs for the synthesis of Pt-DSA/TiO2 through the photochemical defect tuning process.

Extended Data Fig. 2 STEM and STEM-EDS elemental mapping images of Pt/TiO2 and Pt-NP/TiO2.

a, The Pt/TiO2 catalyst was produced through direct light irradiation on a mixture of Pt precursor (0.7 wt%) and anatase TiO2. In this particular case, Pt particles agglomerated severely, resulting in an irregular dispersion of Pt. b, The Pt-NP/TiO2 catalyst was prepared by physisorption of pre-made Pt nanoparticle on anatase TiO2.

Extended Data Fig. 3 Characterization of Pt-SA/hydrogenated TiO2.

Pt deposition on hydrogenated TiO2, which is a conventional atomic metal deposition technique, was conducted and subsequently analyzed. a, EPR spectra of hydrogenated commercial anatase TiO2 and Pt-SA/hydrogenated TiO2. b, STEM and STEM-EDS elemental mapping images of Pt-SA/hydrogenated TiO2. c, XPS spectra of Pt-SA/hydrogenated TiO2. In (b) and (c), agglomeration of Pt was detected. d, Schematic illustration of the deposition of Pt metals on TiO2 through conventional wet-impregnation method on hydrogenated TiO2. The loading amount of Pt-SA/hydrogenated TiO2 was 0.1 wt%, with identical concentrations of the Pt precursor solution and stabilization time as the conditions used for Pt-DSA 0.7 wt%/TiO2.

Source data

Extended Data Fig. 4 EPR spectra of air regeneration process of irradiated ZnO and CeO2.

a, b, the EPR signal related to surface VOs vanished upon exposure to the air. This phenomenon suggests that photochemically induced surface VOs can naturally (a) revert back to bulk VOs for ZnO and (b) be refilled for CeO2, through the contact with oxygen in the air.

Source data

Extended Data Fig. 5 The pictures of synthesized M (Pt, Ir and Cu)-DSA/supports (TiO2, ZnO and CeO2) catalysts.

a, The pictures of pristine TiO2 (left) and Pt-DSA/TiO2 (right). b, c, d, The samples in the left, middle and right side represent Pt, Ir and Cu-DSA/ (b) TiO2, (c) ZnO and (d) CeO2, respectively.

Extended Data Fig. 6 XPS spectra and XRD patterns of Pt-DSA/TiO2, ZnO and CeO2.

XPS spectrum of Pt-DSA/TiO2 is provided in Fig. 2f. a, The Pt-DSA/TiO2 showed identical XRD patterns which corresponded with anatase TiO2 (JCPDS card 96-720-6076). b,c, XPS spectra of the Pt-DSA/ (b) ZnO (a pink line is Al 2p signal which comes from residual Al in commercial ZnO (Supplementary Fig. 1b)) and (c) CeO2. d,e, XRD patterns of Pt-DSA/ (d) ZnO and (e) CeO2 showed identical patterns with bare ZnO (JCPDS card 96-900-4182) and CeO2 (JCPDS card 96-900-9009), respectively.

Source data

Extended Data Fig. 7 XPS spectra and XRD patterns of M(Ir and Cu)-DSA/TiO2, ZnO and CeO2.

a, b, c, XPS spectra of the Ir-DSA/ (a) TiO2 (a pink line is Na 2 s signal which comes from residual Na in commercial anatase TiO2 (Supplementary Fig. 1c)), (b) ZnO and (c) CeO2. The resulting Ir peak occurred between the position of Ir4+ and Ir0. d,e,f, XPS spectra of the Cu-DSA/ (d) TiO2, (e) ZnO and (f) CeO2 (a pink line is signal which comes from residual elements in commercial CeO2 (Supplementary Fig. 1d)). g,h,i, XRD patterns of Ir and Cu-DSA/ (g) TiO2, (h) ZnO and (i) CeO2 showed identical patterns with bare TiO2 (JCPDS card 96-720-6076), ZnO (JCPDS card 96-900-4182) and CeO2 (JCPDS card 96-900-9009), respectively.

Source data

Extended Data Fig. 8 Quantification of the consumed reactants before and after the photo-reforming of PET through the analysis of 1H NMR spectra.

The amount of EG and TPA consumed after 40 h of the reaction in Fig. 5e was calculated using the calibration curves in (b) and (d). The calculated amounts of EG and TPA before the reaction were 111 μmol and 20.6 μmol, respectively. After 40 h of the reaction, 100% of EG (111 μmol) and 91% of TPA (18.7 μmol) were consumed. a,b,c,d, The calibration curves for (b) EG and (d) TPA were obtained based on 1H NMR data from different concentrations of (a) EG and (c) TPA, respectively. The normalized areas of EG and TPA against DMSO (internal standard) were plotted depending on concentrations, and linear regression equations were obtained. TPA was detected as a form of terephthalate in the 1H NMR (D2O condition) data.

Source data

Extended Data Table 1 Comparison between recent TiO2 based photocatalysts on the photocatalytic HER activity51,52,53
Extended Data Table 2 Comparison between recently reported photocatalysts on the hydrogen evolution activity through photo-reforming of non-recyclable plastics

Supplementary information

Supplementary Information

Supplementary Figs. 1–9.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C.W., Lee, BH., Park, S. et al. Photochemical tuning of dynamic defects for high-performance atomically dispersed catalysts. Nat. Mater. 23, 552–559 (2024). https://doi.org/10.1038/s41563-024-01799-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-01799-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing