Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-quality nanocavities through multimodal confinement of hyperbolic polaritons in hexagonal boron nitride

Abstract

Compressing light into nanocavities substantially enhances light–matter interactions, which has been a major driver for nanostructured materials research. However, extreme confinement generally comes at the cost of absorption and low resonator quality factors. Here we suggest an alternative optical multimodal confinement mechanism, unlocking the potential of hyperbolic phonon polaritons in isotopically pure hexagonal boron nitride. We produce deep-subwavelength cavities and demonstrate several orders of magnitude improvement in confinement, with estimated Purcell factors exceeding 108 and quality factors in the 50–480 range, values approaching the intrinsic quality factor of hexagonal boron nitride polaritons. Intriguingly, the quality factors we obtain exceed the maximum predicted by impedance-mismatch considerations, indicating that confinement is boosted by higher-order modes. We expect that our multimodal approach to nanoscale polariton manipulation will have far-reaching implications for ultrastrong light–matter interactions, mid-infrared nonlinear optics and nanoscale sensors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nanocavities in the literature and MECs.
Fig. 2: Near-field measurements of nanocavities.
Fig. 3: Quality of confinement in nanocavities.
Fig. 4: Multimodal reflection.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Baumberg, J. J. et al. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Benz, F. et al. Single-molecule optomechanics in ‘picocavities’. Science 354, 726–729 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Leng, H. et al. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons. Nat. Commun. 9, 4012 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yoo, D. et al. Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities. Nat. Photon. 15, 125–130 (2021).

    Article  CAS  Google Scholar 

  6. Mueller, N. S. et al. Deep strong light-matter coupling in plasmonic nanoparticle crystals. Nature 583, 780–784 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Ciuti, C., Bastard, G. & Carusotto, I. Quantum vacuum properties of the intersubband cavity polariton field. Phys. Rev. B 72, 115303 (2005).

    Article  Google Scholar 

  8. Frisk Kockum, A. et al. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19–40 (2019).

    Article  Google Scholar 

  9. Andolina, G. M., Pellegrino, F. M. D., Giovannetti, V., MacDonald, A. H. & Polini, M. Theory of photon condensation in a spatially varying electromagnetic field. Phys. Rev. B 102, 125137 (2020).

    Article  CAS  Google Scholar 

  10. Schäfer, C., Flick, J., Ronca, E., Narang, P. & Rubio, A. Shining light on the microscopic resonant mechanism responsible for cavity-mediated chemical reactivity. Nat. Commun. 13, 7817 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schuller, J. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Ashida, Y., İmamoǧlu, A. & Demler, E. Cavity quantum electrodynamics with hyperbolic van der Waals materials. Phys. Rev. Lett. 130, 216901 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Flick, J., Ruggenthaler, M., Appel, H. & Rubio, A. Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry. Proc. Natl Acad. Sci. USA 114, 3026–3034 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garcia-Vidal, F. J., Ciuti, C. & Ebbesen, T. W. Manipulating matter by strong coupling to vacuum fields. Science 373, eabd0336 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Santhosh, K. et al. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 7, ncomms11823 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuttge, M., García De Abajo, F. J. & Polman, A. Ultrasmall mode volume plasmonic nanodisk resonators. Nano Lett. 10, 1537–1541 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Epstein, I. et al. Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes. Science 368, 1219–1223 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Brar, V. W. et al. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett. 13, 2541–2547 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Nikitin, A. et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nat. Photon. 10, 239–243 (2016).

    Article  CAS  Google Scholar 

  20. Wang, S. et al. Metallic carbon nanotube nanocavities as ultracompact and low-loss Fabry-Pérot plasmonic resonators. Nano Lett. 20, 2695–2702 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Mock, J. J. et al. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116, 6755–6759 (2002).

    Article  CAS  Google Scholar 

  22. Kelly, K. L. et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).

    Article  CAS  Google Scholar 

  23. Yang, X. et al. Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nat. Photon. 6, 450–454 (2012).

    Article  CAS  Google Scholar 

  24. Indukuri, S. C. et al. Ultrasmall mode volume hyperbolic nanocavities for enhanced light–matter interaction at the nanoscale. ACS Nano 13, 11770–11780 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Dubrovkin, A. M. et al. Resonant nanostructures for highly confined and ultra-sensitive surface phonon-polaritons. Nat. Commun. 11, 1863 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, T. et al. Optical properties of single infrared resonant circular microcavities for surface phonon polaritons. Nano Lett. 13, 5051–5055 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Alfaro-Mozaz, F. et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat. Commun. 8, 15624 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Giles, A. J. et al. Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride. Nano Lett. 16, 3858–3865 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Ambrosio, A. et al. Mechanical detection and imaging of hyperbolic phonon polaritons in hexagonal boron nitride. ACS Nano 11, 8741–8746 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Tamagnone, M. et al. Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Sci. Adv. 4, eaat7189 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tamagnone, M. et al. High quality factor polariton resonators using van der Waals materials. Preprint at https://arxiv.org/abs/1905.02177 (2019).

  32. Autore, M. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light Sci. Appl. 7, 17172 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Caldwell, J. et al. Sub-diffraction, volume-confined polaritons in the natural hyperbolic material, hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Brown, L. V. et al. Nanoscale mapping and spectroscopy of nonradiative hyperbolic modes in hexagonal boron nitride nanostructures. Nano Lett. 18, 1628–1636 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Autore, M., Dolado, I. & Li, P. Enhanced light–matter interaction in 10B monoisotopic boron nitride infrared nanoresonators. Adv. Opt. Mater. 9, 2001958 (2021).

    Article  CAS  Google Scholar 

  36. Yang, J. et al. Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor. Opt. Express 20, 16880–16891 (2012).

    Article  CAS  Google Scholar 

  37. Chatzakis, I. et al. Strong confinement of optical fields using localized surface phonon polaritons in cubic boron nitride. Opt. Lett. 43, 2177–2180 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Lee, I. H. et al. Image polaritons in boron nitride for extreme polariton confinement with low losses. Nat. Commun. 11, 3649 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Giles, A. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Guo, X. et al. Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes. Nat. Nanotechnol. 18, 529–534 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Duan, J. et al. Active and passive tuning of ultranarrow resonances in polaritonic nanoantennas. Adv. Mater. 34, 2104954 (2022).

    Article  CAS  Google Scholar 

  42. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).

    Article  Google Scholar 

  44. Hillenbrand, R. et al. Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe. Appl. Phys. Lett. 83, 368–370 (2003).

    Article  CAS  Google Scholar 

  45. Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6, 6963 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Li, N. et al. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nat. Mater. 20, 43–48 (2020).

    Article  PubMed  Google Scholar 

  48. Torre, I., Orsini, L., Ceccanti, M., Herzig Sheinfux, H. & Koppens, F. H. L. Green’s functions theory of nanophotonic cavities with hyperbolic materials. Preprint at https://arxiv.org/abs/2104.00511 (2021).

  49. Herzig Sheinfux, H. et al. Evolution and reflection of ray-like excitations in hyperbolic dispersion media. Preprint at https://arxiv.org/abs/2104.00091 (2021).

Download references

Acknowledgements

F.H.L.K. acknowledges support from the ERC TOPONANOP under grant agreement no. 726001, the ERC proof-of-concept grant Polarsense, the Government of Spain (FIS2016-81044; Severo Ochoa CEX2019-000910-S), Fundació Cellex, Fundació Mir-Puig and Generalitat de Catalunya (CERCA, AGAUR, SGR 1656). Furthermore, the research leading to these results has received funding from the European Union’s Horizon 2020 programme under grant agreement no. 881603 (Graphene Flagship Core3). H.H.S. acknowledges funding from the European Union’s Horizon 2020 programme under the Marie Skłodowska-Curie grant agreement no. 843830. N.C.H.H. acknowledges funding from the European Union’s Horizon 2020 programme under the Marie Skłodowska-Curie grant agreement no. 665884. R.B. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 847517. L.O. acknowledges support by The Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement de la Generalitat de Catalunya, as well as the European Social Fund (L'FSE inverteix en el teu futur)—FEDER. M.C. acknowledge the support of the 'Presencia de la Agencia Estatal de Investigación' within the Convocatoria de tramitación anticipada, correspondente al año 2020, de las ayudas para contractos predoctorales (Ref. PRE2020-094864) para la formación de doctores contemplada en el Subprograma Estatal de Fromación del Programa Estatal de Promoción del Talento y su Empleabilidad en I+D+i, en el marco del Plan Estatal de Investigacón Científica y Técnica de Innovación 2017–2020, cofinanciado por el Fondo Social Europeo. J.H.E. acknowledges support from the Office of Naval Research (award N00014-20-1-2474). M.J. and G.S. acknowledge support from the Office of Naval Research (ONR) under grant no. N00014-21-1-2056, the support of the Army Research Office under award W911NF2110180 and by the National Science Foundation (NSF) under grant no. DMR-1719875. M.J. was also supported in part by the Kwanjeong Fellowship from Kwanjeong Educational Foundation. R.M. and V.P. acknowledge support from the Opto group Plan Nacional project (TUNASURF). We also wish to thank J. Osmond, H. Lozano and N. V. Hulst for help with the FIB operation, which was also supported by the European Commission under ERC Advanced Grant 670949-LightNet.

Author information

Authors and Affiliations

Authors

Contributions

H.H.S., L.O., M.C., D.B.R., S.C., R.M. and V.P. worked on the sample fabrication with help from A.Hötger. and A.Holleitner. The isotopic hBN crystals were grown by E.J. and J.H.E. The measurements were performed by H.H.S. and L.O. with help from D.B.R. and N.C.H.H. The analytical and semi-analytical theory was developed by H.H.S., I.T. and M.C., and the numerical calculations were performed by M.J., M.C., S.M., R.B. and G.S. The experiments were designed by H.H.S. and F.H.L.K. All authors contributed to writing the manuscript and A.Holleitner., V.P., G.S. and F.H.L.K. supervised the work.

Corresponding author

Correspondence to Frank H. L. Koppens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–5, Figs. 1–31 and references.

Supplementary Video 1

Simulated electric-field amplitude in an inverted cavity, for plane-wave excitation at a varying frequency (Supplementary Section 4.2). The cavity is expected to be resonant at around 1,393 cm–1, but shows no clear resonant response. The simulation dimensions are scaled for presentation purposes, the size of the MEC (inverted cavity) is 260 nm and the flake is 10 nm thin. The brighter areas in the colour map correspond to a higher signal and each subplot is separately normalized.

Supplementary Video 2

Simulated electric-field phase in an inverted cavity, for plane-wave excitation at a varying frequency (Supplementary Section 4.2). The simulation dimensions are scaled for presentation purposes, the size of the MEC (inverted cavity) is 260 nm and the flake is 10 nm thin. The colour map goes from –π (green) to π (purple).

Supplementary Video 3

Simulated electric-field amplitude in an MEC cavity, for plane-wave excitation at a varying frequency (Supplementary Section 4.2). As the frequency reaches the resonant frequency of 1,507 cm–1, the field is strongly localized inside the cavity and exhibits sharp (multimodal) ray-like features. The simulation dimensions are scaled for presentation purposes, the size of the MEC (inverted cavity) is 260 nm and the flake is 10 nm thin. The brighter areas in the colour map correspond to a higher signal and each subplot is separately normalized.

Supplementary Video 4

Simulated electric-field phase in an MEC cavity, for plane-wave excitation at a varying frequency (Supplementary Section 4.2). The simulation dimensions are scaled for presentation purposes, the size of the MEC (inverted cavity) is 260 nm and the flake is 10 nm thin. The colour map goes from –π (green) to π (purple).

Supplementary Video 5

Simulated intensity profile of a multimodal nanoray propagating inside an hBN flake (edges indicated by cyan lines) when it is incident on a single metallic corner. The ray is excited by a dipole situated outside (to the left), which is not shown to avoid colour saturation. The frequency of excitation—and therefore the angle of the nanoray—is swept throughout the video. When the ray is exactly incident on the corner, it experiences strong (enhanced) reflection, whereas for other frequencies, the ray experiences enhanced transmission (Supplementary Section 4.3).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herzig Sheinfux, H., Orsini, L., Jung, M. et al. High-quality nanocavities through multimodal confinement of hyperbolic polaritons in hexagonal boron nitride. Nat. Mater. 23, 499–505 (2024). https://doi.org/10.1038/s41563-023-01785-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01785-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing