Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Defects have a key role in determining the functionality of solids and can make them powerful catalysts. This Review examines defect chemistry in metal oxides and discusses the role that charged defects and polarons have in enabling photoelectrochemical reactions.
2D semiconductor heterostructures host tightly bound exciton states that interact strongly with light. This Review discusses two approaches for realizing emergent excitonic physics in these systems: the introduction of a moiré superlattice and the formation of an optical cavity.
Memristors are devices that possess materials-level complex dynamics that can be used for computing, such that each memristor can functionally replace elaborate digital circuits. This Review surveys novel material properties that enable complex dynamics and new computing architectures that offer dramatically greater computing efficiency than conventional computers.
Ferroelectric HfO2 and related materials are promising for device applications, given that non-ferroelectric HfO2 is already used for applications at the industrial scale, is CMOS-compatible and is robust to degradation. This Review summarizes the properties and origin of ferroelectricity in HfO2-based materials and surveys their potential applications.
Only in recent years has the Hall effect been predicted and observed in materials with antiferromagnetic order. This Review systematically organizes the current understanding of anomalous antiferromagnetic materials that generate a Hall effect, discussing these systems in the broad context of spintronics, topological condensed matter and multipole magnetism.
Multicaloric cooling promises environmentally friendly and high-efficiency refrigeration. In this Review, the authors discuss emerging multicaloric materials and their physics involving coexisting ferroic order parameters, examine key factors that govern the overall system efficiency of potential multicaloric devices and envision future applications.
Wearable devices can sense physiological signals on the surface of the human body. This Review discusses the design, sensing mechanisms and fabrication of wearable devices that can probe deep-tissue signals, beyond the skin, to provide information about human health and disease.
Crystalline silicon solar cells are today’s main photovoltaic technology, enabling the production of electricity with minimal carbon emissions and at an unprecedented low cost. This Review discusses the recent evolution of this technology, the present status of research and industrial development, and the near-future perspectives.
Methane, as a replacement for crude oil, can be converted into valuable chemicals through photocatalysis. This Review discusses the design of promising photocatalytic systems and strategies to understand their reaction mechanisms and outlines the most pressing questions still facing the field.
Inflammation plays a central role in our body’s response to injury or infection. If dysregulated, inflammatory responses can lead to chronic inflammation and the development of inflammatory diseases. This Review discusses biomaterials-based anti-inflammatory therapies, including scavenging, blockage and drug delivery strategies.
Layered oxide compounds with anion redox are among the most promising positive electrode materials for next-generation Li-ion batteries. In this Review, we discuss the thermodynamics and kinetics of the proposed redox mechanisms, and the implications of these mechanisms for designing engineering strategies to achieve stable anion redox.
Trained immunity is a form of nonspecific immune memory, harboured within the innate immune system. This Review discusses nanomedicine platforms to therapeutically regulate trained immunity for the treatment of various conditions, including cancer, inflammation and infection.
Polymer materials that can reorganize over time or under specific conditions have enormous advantages over static polymer networks. This Review discusses the many classes of molecular bonding motifs used to introduce dynamicity to polymer materials and outlines the design rules for engineering the interaction timescales for desired applications.
The ability to control interlayer excitons in van der Waals heterostructures provides a practical way to address the spin and valley degrees of freedom in solid-state devices. This Review surveys the recent progress in this field, with a focus on devices and engineering techniques.
Long-acting drug delivery formulations enable sustained and prolonged drug release at the site of action or for systemic delivery, overcoming the need for frequent and repeated drug administration. This Review discusses US Food and Drug Administration (FDA)-approved long-acting drug delivery formulations, highlighting different slow-release mechanisms and delivery platforms, and the materials used to achieve them.
Microplastic is a complex contaminant causing great concern in society. This Review examines the properties of microplastic particles compared with natural particles in the environment and discusses methods of assessing the risks to humans and the environment.
Plastics support modern life but are also associated with environmental pollution. This Review discusses technologies for the production and recycling of bioplastics as part of a more sustainable and circular economy.
The design of superionic conductors necessitates a fundamental understanding of how to invoke fast ion transport in the solid state. This Review discusses the role of framework anion rotational dynamics in enhancing cation diffusion through the paddle-wheel mechanism and its exploitation at room temperature.
Nanoreactors that isolate chemical precursors within a confined space are promising tools for synthesizing nanoparticles. This Review unifies the many classes of solution-based and substrate-confined nanoreactors, evaluating their current synthetic capabilities and their potential for solving future challenges in nanoparticle synthesis.
Centrifugal and/or shear forces induced by rotary motion can drastically alter outcomes of chemical experiments and processes. This Review surveys rotary systems in which such forces control self-organization phenomena, materials synthesis or even chemical reactivity at molecular and macromolecular scales.