Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A materials physics perspective on structure–processing–function relations in blends of organic semiconductors

Abstract

During the past 30 years of research in organic electronics, the development of mechanistic understanding of important structure–processing–performance interrelationships has been slowly but steadily growing. Nevertheless, especially if blends are used in the active device layer, the development of new materials and device fabrication still predominantly relies on time-consuming trial-and-error procedures. In this Review, we demonstrate that well-established models, rooted in classical materials science and the thermodynamics of mixtures, can provide quantitative frameworks to guide material and process design. We provide, from a materials physics perspective, a concise and accessible overview on the relation between fundamental thermodynamic and kinetic principles relevant to (solution) processing, active layer morphology and stability of organic electronic devices based on blends by means of illustrative examples from organic photovoltaics. We aim to address a wide audience, including synthetic chemists, materials scientists, device engineers and beyond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Processing, morphology and molecular structure.
Fig. 2: Measurement and prediction of thermodynamic parameters.
Fig. 3: Phase diagram and structure formation in ternary blends comprising a donor, an acceptor and a solvent.
Fig. 4: OPV device processing informed by ϕχ phase diagrams.
Fig. 5: Relation between χ and device stability.
Fig. 6: Binary phase diagrams for systems in which one or both components can crystallize.

Similar content being viewed by others

References

  1. Yan, C. et al. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018).

    Article  CAS  Google Scholar 

  2. Hou, J., Inganäs, O., Friend, R. & Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119 (2018).

    Article  CAS  Google Scholar 

  3. Cheng, P., Li, G., Zhan, X. & Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics 12, 131–142 (2018).

    Article  CAS  Google Scholar 

  4. Armin, A. et al. A history and perspective of non-fullerene electron acceptors for organic solar cells. Adv. Energy Mater. 11, 2003570 (2021).

    Article  CAS  Google Scholar 

  5. Meng, D. et al. Near-infrared materials: the turning point of organic photovoltaics. Adv. Mater. 34, 2107330 (2022).

    Article  CAS  Google Scholar 

  6. Mahmood, A. & Wang, J. L. Machine learning for high performance organic solar cells: current scenario and future prospects. Energy Environ. Sci. 14, 90–105 (2021).

    Article  CAS  Google Scholar 

  7. Zhao, Z. W., Geng, Y., Troisi, A. & Ma, H. B. Performance prediction and experimental optimization assisted by machine learning for organic photovoltaics. Adv. Intell. Syst. 4, 2100261 (2022).

    Article  Google Scholar 

  8. Cao, B. et al. How to optimize materials and devices via design of experiments and machine learning: demonstration using organic photovoltaics. ACS Nano 12, 7434–7444 (2018).

    Article  CAS  Google Scholar 

  9. Lee, H., Park, C., Sin, D. H., Park, J. H. & Cho, K. Recent advances in morphology optimization for organic photovoltaics. Adv. Mater. 30, 1800453 (2018).

    Article  Google Scholar 

  10. Jackson, N. E., Savoie, B. M., Marks, T. J., Chen, L. X. & Ratner, M. A. The next breakthrough for organic photovoltaics? J. Phys. Chem. Lett. 6, 77–84 (2015).

    Article  CAS  Google Scholar 

  11. Levitsky, A. et al. Toward fast screening of organic solar cell blends. Adv. Sci. 7, 2000960 (2020).

    Article  CAS  Google Scholar 

  12. Meng, L. et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361, 1094–1098 (2018).

    Article  CAS  Google Scholar 

  13. Fan, B. et al. Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics. Nat. Energy 3, 1051–1058 (2018).

    Article  CAS  Google Scholar 

  14. Baran, D. et al. Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat. Mater. 16, 363–369 (2017).

    Article  CAS  Google Scholar 

  15. Xue, R., Zhang, J., Li, Y. & Li, Y. Organic solar cell materials toward commercialization. Small 14, 1801793 (2018).

    Article  Google Scholar 

  16. Diao, Y., Shaw, L., Bao, Z. A. & Mannsfeld, S. C. B. Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ. Sci. 7, 2145–2159 (2014).

    Article  CAS  Google Scholar 

  17. Michels, J. J. et al. Predictive modelling of structure formation in semiconductor films produced by meniscus-guided coating. Nat. Mater. 20, 68–75 (2021).

    Article  CAS  Google Scholar 

  18. Yildiz, O. et al. Optimized charge transport in molecular semiconductors by control of fluid dynamics and crystallization in meniscus-guided coating. Adv. Funct. Mater. 32, 2107976 (2021).

    Article  Google Scholar 

  19. Kalyani, N. T. & Dhoble, S. J. Organic light emitting diodes: energy saving lighting technology — a review. Renew. Sust. Energy Rev. 16, 2696–2723 (2012).

    Article  Google Scholar 

  20. Tao, Y. T., Yang, C. L. & Qin, J. G. Organic host materials for phosphorescent organic light-emitting diodes. Chem. Soc. Rev. 40, 2943–2970 (2011).

    Article  CAS  Google Scholar 

  21. Costa, R. D. et al. Luminescent ionic transition-metal complexes for light-emitting electrochemical cells. Angew. Chem. Int. Ed. 51, 8178–8211 (2012).

    Article  CAS  Google Scholar 

  22. Asadi, K. et al. Spinodal decomposition of blends of semiconducting and ferroelectric polymers. Adv. Funct. Mater. 21, 1887–1894 (2011).

    Article  CAS  Google Scholar 

  23. Li, M. et al. Processing and low voltage switching of organic ferroelectric phase-separated bistable diodes. Adv. Funct. Mater. 22, 2750–2757 (2012).

    Article  CAS  Google Scholar 

  24. Michels, J. J., van Breemen, A. J. J. M., Usman, K. & Gelinck, G. H. Liquid phase demixing in ferroelectric/semiconducting polymer blends: an experimental and theoretical study. J. Polym. Sci. Pt B Polym. Phys. 49, 1255–1262 (2011).

    Article  CAS  Google Scholar 

  25. Asadi, K., de Boer, T. G., Blom, P. W. M. & de Leeuw, D. M. Tunable injection barrier in organic resistive switches based on phase-separated ferroelectric-semiconductor blends. Adv. Funct. Mater. 19, 3173–3178 (2009).

    Article  CAS  Google Scholar 

  26. van Breemen, A. et al. Surface directed phase separation of semiconductor ferroelectric polymer blends and their use in non-volatile memories. Adv. Funct. Mater. 25, 278–286 (2015).

    Article  Google Scholar 

  27. Ye, L. et al. Miscibility–function relations in organic solar cells: significance of optimal miscibility in relation to percolation. Adv. Energy Mater. 8, 1703058 (2018).

    Article  Google Scholar 

  28. Bartelt, J. A. et al. The importance of fullerene percolation in the mixed regions of polymer–fullerene bulk heterojunction solar cells. Adv. Energy Mater. 3, 364–374 (2013).

    Article  CAS  Google Scholar 

  29. Ye, L. et al. Quenching to the percolation threshold in organic solar cells. Joule 3, 443–458 (2019).

    Article  CAS  Google Scholar 

  30. Ghasemi, M. et al. Delineation of thermodynamic and kinetic factors that control stability in non-fullerene organic solar cells. Joule 3, 1328–1348 (2019).

    Article  CAS  Google Scholar 

  31. Tumbleston, J. R., Yang, L. Q., You, W. & Ade, H. Morphology linked to miscibility in highly amorphous semi-conducting polymer/fullerene blends. Polymer 55, 4884–4889 (2014).

    Article  CAS  Google Scholar 

  32. Hohenberg, P. C. & Halperin, B. I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977).

    Article  CAS  Google Scholar 

  33. Mcculloch, I. et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328–333 (2006).

    Article  CAS  Google Scholar 

  34. Greco, C., Melnyk, A., Kremer, K., Andrienko, D. & Daoulas, K. C. Generic model for lamellar self-assembly in conjugated polymers: linking mesoscopic morphology and charge transport in P3HT. Macromolecules 52, 968–981 (2019).

    Article  CAS  Google Scholar 

  35. Schulz, G. L. et al. The PCPDTBT family: correlations between chemical structure, polymorphism, and device performance. Macromolecules 50, 1402–1414 (2017).

    Article  CAS  Google Scholar 

  36. Xie, R. X. et al. Local chain alignment via nematic ordering reduces chain entanglement in conjugated polymers. Macromolecules 51, 10271–10284 (2018).

    Article  CAS  Google Scholar 

  37. Wood, E. L., Greco, C., Ivanov, D. A., Kremer, K. & Daoulas, K. C. Mesoscopic modeling of a highly-ordered sanidic polymer mesophase and comparison with experimental data. J. Phys. Chem. B 126, 2285–2298 (2022).

    Article  CAS  Google Scholar 

  38. Martin, J. et al. Temperature-dependence of persistence length affects phenomenological descriptions of aligning interactions in nematic semiconducting polymers. Chem. Mater. 30, 748–761 (2018).

    Article  CAS  Google Scholar 

  39. Zhang, X. R. et al. In-plane liquid crystalline texture of high-performance thienothiophene copolymer thin films. Adv. Funct. Mater. 20, 4098–4106 (2010).

    Article  CAS  Google Scholar 

  40. Xie, R. et al. Glass transition temperature of conjugated polymers by oscillatory shear rheometry. Macromolecules 50, 5146–5154 (2017).

    Article  CAS  Google Scholar 

  41. Sharma, A. et al. Probing the relationship between molecular structures, thermal transitions, and morphology in polymer semiconductors using a woven glass-mesh-based DMTA technique. Chem. Mater. 31, 6740–6749 (2019).

    Article  CAS  Google Scholar 

  42. Ye, L. et al. Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat. Mater. 17, 253–260 (2018).

    Article  CAS  Google Scholar 

  43. Treat, N. D., Mates, T. E., Hawker, C. J., Kramer, E. J. & Chabinyc, M. L. Temperature dependence of the diffusion coefficient of PCBM in poly(3-hexylthiophene). Macromolecules 46, 1002–1007 (2013).

    Article  CAS  Google Scholar 

  44. Chen, D., Liu, F., Wang, C., Nakahara, A. & Russell, T. P. Bulk heterojunction photovoltaic active layers via bilayer interdiffusion. Nano Lett. 11, 2071–2078 (2011).

    Article  CAS  Google Scholar 

  45. Chen, D. A., Nakahara, A., Wei, D. G., Nordlund, D. & Russell, T. P. P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology. Nano Lett. 11, 561–567 (2011).

    Article  CAS  Google Scholar 

  46. Treat, N. D. et al. Interdiffusion of PCBM and P3HT reveals miscibility in a photovoltaically active blend. Adv. Energy Mater. 1, 82–89 (2011).

    Article  CAS  Google Scholar 

  47. Chen, H. P. et al. The role of fullerene mixing behavior in the performance of organic photovoltaics: PCBM in low-bandgap polymers. Adv. Funct. Mater. 24, 140–150 (2014).

    Article  CAS  Google Scholar 

  48. Peng, Z., Balar, N., Ghasemi, M. & Ade, H. Upper and apparent lower critical solution temperature branches in the phase diagram of polymer: small molecule semiconducting systems. J. Phys. Chem. Lett. 12, 10845–10853 (2021).

    Article  CAS  Google Scholar 

  49. Ro, H. et al. Poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester mixing in organic solar cells. Macromolecules 45, 6587–6599 (2012).

    Article  CAS  Google Scholar 

  50. Chen, H. P., Hegde, R., Browning, J. & Dadmun, M. D. The miscibility and depth profile of PCBM in P3HT: thermodynamic information to improve organic photovoltaics. Phys. Chem. Chem. Phys. 14, 5635–5641 (2012).

    Article  CAS  Google Scholar 

  51. Flory, P. J. Principles of Polymer Chemistry (Cornell Univ. Press, 1953).

  52. Treat, N. D., Westacott, P. & Stingelin, N. The power of materials science tools for gaining insights into organic semiconductors. Annu. Rev. Mater. Res. 45, 459–490 (2015).

    Article  CAS  Google Scholar 

  53. Abolhasani, M. M. et al. Hierarchically structured porous piezoelectric polymer nanofibers for energy harvesting. Adv. Sci. 7, 2000517 (2020).

    Article  CAS  Google Scholar 

  54. Liu, F. et al. Molecular weight dependence of the morphology in P3HT:PCBM solar cells. ACS Appl. Mater. Interf. 6, 19876–19887 (2014).

    Article  CAS  Google Scholar 

  55. Knychała, P., Timachova, K., Banaszak, M. & Balsara, N. 50th Anniversary perspective: phase behavior of polymer solutions and blends. Macromolecules 50, 3051–3065 (2017).

    Article  Google Scholar 

  56. Schaefer, C., Michels, J. J. & van der Schoot, P. Dynamic surface enrichment in drying thin-film binary polymer solutions. Macromolecules 50, 5914–5919 (2017).

    Article  CAS  Google Scholar 

  57. Schaefer, C., Michels, J. J. & van der Schoot, P. Structuring of thin-film polymer mixtures upon solvent evaporation. Macromolecules 49, 6858–6870 (2016).

    Article  CAS  Google Scholar 

  58. Michels, J. & Moons, E. Simulation of surface-directed phase separation in a solution-processed polymer/PCBM blend. Macromolecules 46, 8693–8701 (2013).

    Article  CAS  Google Scholar 

  59. Kim, J. Y. Phase diagrams of binary low bandgap conjugated polymer solutions and blends. Macromolecules 52, 4317–4328 (2019).

    Article  CAS  Google Scholar 

  60. Abolhasani, M. M. et al. Thermodynamic approach to tailor porosity in piezoelectric polymer fibers for application in nanogenerators. Nano Energy 62, 594–600 (2019).

    Article  CAS  Google Scholar 

  61. Kouijzer, S. et al. Predicting morphologies of solution processed polymer: fullerene blends. J. Am. Chem. Soc. 135, 12057–12067 (2013).

    Article  CAS  Google Scholar 

  62. Kim, M. et al. Critical factors governing vertical phase separation in polymer–PCBM blend films for organic solar cells. J. Mater. Chem. A 4, 15522–15535 (2016).

    Article  CAS  Google Scholar 

  63. Westacott, P. et al. Origin of fullerene-induced vitrification of fullerene:donor polymer photovoltaic blends and its impact on solar cell performance. J. Mater. Chem. A 5, 2689–2700 (2017).

    Article  CAS  Google Scholar 

  64. Nishi, T. & Wang, T. Melting point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride)-poly(methyl methacrylate) mixtures. Macromolecules 8, 909–915 (1975).

    Article  CAS  Google Scholar 

  65. Kozub, D. et al. Polymer crystallization of partially miscible polythiophene/fullerene mixtures controls morphology. Macromolecules 44, 5722–5726 (2011).

    Article  CAS  Google Scholar 

  66. Emerson, J. A., Toolan, D. T. W., Howse, J. R., Furst, E. M. & Epps, T. H. Determination of solvent–polymer and polymer–polymer Flory–Huggins interaction parameters for poly(3-hexylthiophene) via solvent vapor swelling. Macromolecules 46, 6533–6540 (2013).

    Article  CAS  Google Scholar 

  67. Kunz, A., Blom, P. W. M. & Michels, J. J. Charge carrier trapping controlled by polymer blend phase dynamics. J. Mater. Chem. C 5, 3042–3048 (2017).

    Article  CAS  Google Scholar 

  68. van Franeker, J. J., Turbiez, M., Li, W. W., Wienk, M. M. & Janssen, R. A. J. A real-time study of the benefits of co-solvents in polymer solar cell processing. Nat. Commun. 6, 6229 (2015).

  69. Schaefer, C., van der Schoot, P. & Michels, J. J. Structuring of polymer solutions upon solvent evaporation. Phys. Rev. E 91, 022602 (2015).

    Article  CAS  Google Scholar 

  70. Schaefer, C., Paquay, S. & Mcleish, T. C. B. Morphology formation in binary mixtures upon gradual destabilisation. Soft Matter 15, 8450–8458 (2019).

    Article  CAS  Google Scholar 

  71. Dehsari, H. S., Michels, J. J. & Asadi, K. Processing of ferroelectric polymers for microelectronics: from morphological analysis to functional devices. J. Mater. Chem. C. 5, 10490–10497 (2017).

    Article  CAS  Google Scholar 

  72. Kabalnov, A. Ostwald ripening and related phenomena. J. Dispers. Sci. Technol. 22, 1–12 (2001).

    Article  CAS  Google Scholar 

  73. Musumeci, C., Borgani, R., Bergqvist, J., Inganäs, O. & Haviland, D. Multiparameter investigation of bulk heterojunction organic photovoltaics. RSC Adv. 7, 46313–46320 (2017).

    Article  CAS  Google Scholar 

  74. Nilsson, S., Bernasik, A., Budkowski, A. & Moons, E. Morphology and phase segregation of spin-casted films of polyfluorene/PCBM blends. Macromolecules 40, 8291–9301 (2007).

    Article  CAS  Google Scholar 

  75. Tanaka, H. Viscoelastic phase separation in soft matter and foods. Faraday Discuss. 158, 371–406 (2012).

    Article  CAS  Google Scholar 

  76. Collins, B. A. et al. Absolute measurement of domain composition and nanoscale size distribution explains performance in PTB7:PC71BM solar cells. Adv. Energy Mater. 3, 65–74 (2013).

    Article  Google Scholar 

  77. van Franeker, J. J. et al. Sub-micrometer structure formation during spin coating revealed by time-resolved in situ laser and X-ray scattering. Adv. Funct. Mater. 27, 1702516 (2017).

    Article  Google Scholar 

  78. Khikhlovskyi, V. et al. Nanoscale organic ferroelectric resistive switches. J. Phys. Chem. C 118, 3305–3312 (2014).

    Article  CAS  Google Scholar 

  79. Asadi, K., Li, M. Y., Blom, P. W. M., Kemerink, M. & de Leeuw, D. M. Organic ferroelectric opto-electronic memories. Mater. Today 14, 592–599 (2011).

    Article  CAS  Google Scholar 

  80. Hellmann, C. et al. Solution processing of polymer semiconductor: insulator blends — tailored optical properties through liquid–liquid phase separation control. J. Polym. Sci. B Polym. Phys. 53, 304–310 (2015).

    Article  CAS  Google Scholar 

  81. Mukherjee, S., Jiao, X. & Ade, H. Charge creation and recombination in multi-length scale polymer: fullerene BHJ solar cell morphologies. Adv. Energy Mater. 6, 1600699 (2016).

    Article  Google Scholar 

  82. Li, N. et al. Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor–acceptor demixing. Nat. Commun. 8, 14541 (2017).

    Article  CAS  Google Scholar 

  83. Tumbleston, J. R. et al. The influence of molecular orientation on organic bulk heterojunction solar cells. Nat. Photonics 8, 385–391 (2014).

    Article  CAS  Google Scholar 

  84. Campoy-Quiles, M. et al. Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends. Nat. Mater. 7, 158–164 (2008).

    Article  CAS  Google Scholar 

  85. Kim, Y. et al. Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene. Appl. Phys. Lett. 86, 063502 (2005).

    Article  Google Scholar 

  86. Goffri, S. et al. Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold. Nat. Mater. 5, 950–956 (2006).

    Article  CAS  Google Scholar 

  87. Vakhshouri, K., Kozub, D., Wang, C., Salleo, A. & Gomez, E. Effect of miscibility and percolation on electron transport in amorphous poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester blends. Phys. Rev. Lett. 108, 026601 (2012).

    Article  Google Scholar 

  88. Yin, H. et al. Observing electron transport and percolation in selected bulk heterojunctions bearing fullerene derivatives, non-fullerene small molecules, and polymeric acceptors. Nano Energy 64, 103950 (2019).

    Article  CAS  Google Scholar 

  89. Mukherjee, S., Proctor, C. M., Bazan, G. C., Nguyen, T. Q. & Ade, H. Significance of average domain purity and mixed domains on the photovoltaic performance of high-efficiency solution-processed small-molecule BHJ solar cells. Adv. Energy Mater. 5, 1500877 (2015).

    Article  Google Scholar 

  90. Stuart, A. C. et al. Fluorine substituents reduce charge recombination and drive structure and morphology development in polymer solar cells. J. Am. Chem. Soc. 135, 1806–1815 (2013).

    Article  CAS  Google Scholar 

  91. Qin, Y. P., Xu, Y., Peng, Z. X., Hou, J. H. & Ade, H. Low temperature aggregation transitions in N3 and Y6 acceptors enable double-annealing method that yields hierarchical morphology and superior efficiency in nonfullerene organic solar cells. Adv. Funct. Mater. 30, 2005011 (2020).

    Article  CAS  Google Scholar 

  92. Kong, J. et al. Long-term stable polymer solar cells with significantly reduced burn-in loss. Nat. Commun. 5, 5688 (2014).

    Article  CAS  Google Scholar 

  93. Peters, C. H. et al. The mechanism of burn-in loss in a high efficiency polymer solar cell. Adv. Mater. 24, 663–668 (2012).

    Article  CAS  Google Scholar 

  94. Liu, Y. et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014).

    Article  CAS  Google Scholar 

  95. Prince, A. Alloy Phase Equilibria (Elsevier Publishing Co., 1966).

  96. Müller, C. On the glass transition of polymer semiconductors and its impact on polymer solar cell stability. Chem. Mater. 27, 2740–2754 (2015).

    Article  Google Scholar 

  97. de Zerio, A. D. & Müller, C. Glass forming acceptor alloys for highly efficient and thermally stable ternary organic solar cells. Adv. Energy Mater. 8, 1702741 (2018).

    Article  Google Scholar 

  98. Gibbs, J. H. & Dimarzio, E. A. Nature of the glass transition and the glassy state. J. Chem. Phys. 28, 373–383 (1958).

    Article  CAS  Google Scholar 

  99. Fox, T. G. & Flory, P. J. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys. 21, 581–591 (1950).

    Article  CAS  Google Scholar 

  100. Gordon, M. & Taylor, J. S. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J. Appl. Phys. 2, 495 (1952).

    Google Scholar 

  101. Kwei, T. K. The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures. J. Polym. Sci. Polym. Lett. Ed. 22, 307 (1984).

    Article  CAS  Google Scholar 

  102. Couchman, P. R. & Karasz, F. E. A classical thermodynamic discussion of the effect of composition on glass-transition temperatures. Macromolecules 11, 117–119 (1978).

    Article  CAS  Google Scholar 

  103. Marina, S. et al. The importance of quantifying the composition of the amorphous intermixed phase in organic solar cells. Adv. Mater. 32, 2005241 (2020).

    Article  CAS  Google Scholar 

  104. Sommerville, P. J. W. et al. Elucidating the influence of side-chain circular distribution on the crack onset strain and hole mobility of near-amorphous indacenodithiophene copolymers. Macromolecules 53, 7511–7518 (2020).

    Article  CAS  Google Scholar 

  105. Sommerville, P. J. W. et al. Influence of side chain interdigitation on strain and charge mobility of planar indacenodithiophene copolymers. ACS Polym. Au https://doi.org/10.1021/acspolymersau.2c00034 (2022).

    Article  Google Scholar 

  106. Richter, L. J., DeLongchamp, D. M. & Amassian, A. Morphology development in solution-processed functional organic blend films: an in situ viewpoint. Chem. Rev. 117, 6332–6366 (2017).

    Article  CAS  Google Scholar 

  107. Gevorgyan, S. et al. Lifetime of organic photovoltaics: status and predictions. Adv. Energy Mater. 6, 1501208 (2016).

    Article  Google Scholar 

  108. Zhou, K., Xin, J. & Ma, W. Hierarchical morphology stability under multiple stresses in organic solar cells. ACS Energy Lett. 4, 447–455 (2019).

    Article  CAS  Google Scholar 

  109. Xiao, J. et al. An operando study on the photostability of nonfullerene organic solar cells. Sol. RRL 3, 1900077 (2019).

    Article  Google Scholar 

  110. Cheng, P. & Zhan, X. Stability of organic solar cells: challenges and strategies. Chem. Soc. Rev. 45, 2544–2582 (2016).

    Article  CAS  Google Scholar 

  111. Gumyusenge, A. et al. Semiconducting polymer blends that exhibit stable charge transport at high temperatures. Science 362, 1131–1134 (2018).

    Article  CAS  Google Scholar 

  112. Xin, J. M. et al. Cold crystallization temperature correlated phase separation, performance, and stability of polymer solar cells. Matter 1, 1316–1330 (2019).

    Article  Google Scholar 

  113. Zhang, C. et al. Overcoming the thermal instability of efficient polymer solar cells by employing novel fullerene-based acceptors. Adv. Energy Mater. 7, 1601204 (2017).

    Article  Google Scholar 

  114. Ghasemi, M. et al. A molecular interaction-diffusion framework for predicting organic solar cell stability. Nat. Mater. 20, 525–532 (2021).

    Article  CAS  Google Scholar 

  115. Müller, C. et al. Binary organic photovoltaic blends: a simple rationale for optimum compositions. Adv. Mater. 20, 3510–3515 (2008).

    Article  Google Scholar 

  116. Zhao, J. et al. Phase diagram of P3HT/PCBM blends and its implication for the stability of morphology. J. Phys. Chem. B 113, 1587–1591 (2009).

    Article  CAS  Google Scholar 

  117. Yang, X. et al. Crystalline organization of a methanofullerene as used for plastic solar-cell applications. Adv. Mater. 16, 802–806 (2004).

    Article  CAS  Google Scholar 

  118. Botiz, I., Durbin, M. M. & Stingelin, N. Providing a window into the phase behavior of semiconducting polymers. Macromolecules 54, 5304–5320 (2021).

    Article  CAS  Google Scholar 

  119. Matrone, G. M. et al. The hole in the bucky: structure–property mapping of closed- vs. open-cage fullerene solar-cell blends via temperature/composition phase diagrams. J. Mater. Chem. C 9, 16304–16312 (2021).

    Article  CAS  Google Scholar 

  120. Jamieson, F. C. et al. Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. Chem. Sci. 3, 485–492 (2012).

    Article  CAS  Google Scholar 

  121. Mayer, A. C. et al. Bimolecular crystals of fullerenes in conjugated polymers and the implications of molecular mixing for solar cells. Adv. Funct. Mater. 19, 1173–1179 (2009).

    Article  CAS  Google Scholar 

  122. Buchaca-Domingo, E. et al. Direct correlation of charge transfer absorption with molecular donor:acceptor interfacial area via photothermal deflection spectroscopy. J. Am. Chem. Soc. 137, 5256–5259 (2015).

    Article  CAS  Google Scholar 

  123. Causa, M. et al. The fate of electron–hole pairs in polymer:fullerene blends for organic photovoltaics. Nat. Commun. 7, 12556 (2016).

    Article  CAS  Google Scholar 

  124. Buchaca-Domingo, E. et al. Additive-assisted supramolecular manipulation of polymer:fullerene blend phase morphologies and its influence on photophysical processes. Mater. Horiz. 1, 270–279 (2014).

    Article  CAS  Google Scholar 

  125. Wolfer, P. et al. Identifying the optimum composition in organic solar cells comprising non-fullerene electron acceptors. J. Mater. Chem. A 1, 5989–5995 (2013).

    Article  CAS  Google Scholar 

  126. Wheeler, A. A., Boettinger, W. J. & McFadden, G. B. Phase-field model for isothermal phase transitions in binary alloys. Phys. Rev. A 45, 7424–7439 (1992).

    Article  CAS  Google Scholar 

  127. Drolet, F., Elder, K. R., Grant, M. & Kosterlitz, J. M. Phase-field modeling of eutectic growth. Phys. Rev. E 61, 6705–6720 (2000).

    Article  CAS  Google Scholar 

  128. Matkar, R. A. & Kyu, T. Phase diagrams of binary crystalline-crystalline polymer blends. J. Phys. Chem. B 110, 16059–16065 (2006).

    Article  CAS  Google Scholar 

  129. Rathi, P., Huang, T. M., Dayal, P. & Kyu, T. Crystalline–amorphous interaction in relation to the phase diagrams of binary polymer blends containing a crystalline constituent. J. Phys. Chem. B 112, 6460–6466 (2008).

    Article  CAS  Google Scholar 

  130. Saylor, D. M., Kim, C. S., Patwardhan, D. V. & Warren, J. A. Diffuse-interface theory for structure formation and release behavior in controlled drug release systems. Acta Biomater. 3, 851–864 (2007).

    Article  CAS  Google Scholar 

  131. Peng, Z. et al. Measuring temperature-dependent miscibility for polymer solar cell blends: an easily accessible optical method reveals complex behavior. Chem. Mater. 30, 3943–3951 (2018).

    Article  CAS  Google Scholar 

  132. Koningsveld, R., Stockmayer, W. H. & Nies, E. Polymer Phase Diagrams: A Textbook. (Oxford Univ. Press, 2001).

  133. Marina, S. et al. Polymorphism in non-fullerene acceptors based on indacenodithienothiophene. Adv. Funct. Mater. 31, 2103784 (2021).

    Article  CAS  Google Scholar 

  134. Balar, N. & O’Connor, B. T. Correlating crack onset strain and cohesive fracture energy in polymer semiconductor films. Macromolecules 50, 8611–8618 (2017).

    Article  CAS  Google Scholar 

  135. Balar, N. et al. Resolving the molecular origin of mechanical relaxations in donor–acceptor polymer semiconductors. Adv. Funct. Mater. 32, 2105597 (2022).

    Article  CAS  Google Scholar 

  136. Xie, R. et al. Glass transition temperature from the chemical structure of conjugated polymers. Nat. Commun. 11, 893 (2020).

    Article  CAS  Google Scholar 

  137. Lee, C. et al. Efficient and air-stable aqueous-processed organic solar cells and transistors: impact of water addition on processability and thin-film morphologies of electroactive materials. Adv. Energy Mater. 8, 1802674 (2018).

    Article  Google Scholar 

  138. Zhang, S. Q., Ye, L., Zhang, H. & Hou, J. H. Green-solvent-processable organic solar cells. Mater. Today 19, 533–543 (2016).

    Article  CAS  Google Scholar 

  139. Zhao, J. B. et al. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1, 15027 (2016).

    Article  CAS  Google Scholar 

  140. Hong, L. et al. Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency. Adv. Mater. 31, 1903441 (2019).

    Article  Google Scholar 

  141. Schmidt-Hansberg, B. et al. Investigation of non-halogenated solvent mixtures for high throughput fabrication of polymer–fullerene solar cells. Sol. Energy Mater. Sol. Cell 96, 195–201 (2012).

    Article  CAS  Google Scholar 

  142. Sprau, C. et al. Revisiting solvent additives for the fabrication of polymer: fullerene solar cells: exploring a series of benzaldehydes. Sol. RRL 5, 2100238 (2021).

    Article  CAS  Google Scholar 

  143. Colberts, F. J. M., Wienk, M. M. & Janssen, R. A. J. Aqueous nanoparticle polymer solar cells: effects of surfactant concentration and processing on device performance. ACS Appl. Mater. Interf. 9, 13380–13389 (2017).

    Article  CAS  Google Scholar 

  144. Chowdhury, R. et al. Surfactant engineering and its role in determining the performance of nanoparticulate organic photovoltaic devices. ACS Omega 7, 9212–9220 (2022).

    Article  CAS  Google Scholar 

  145. Michels, J. J., Brzezinski, M., Scheidt, T., Lemke, E. A. & Parekh, S. H. Role of solvent compatibility in the phase behavior of binary solutions of weakly associating multivalent polymers. Biomacromolecules 23, 349–364 (2022).

    Article  CAS  Google Scholar 

  146. Semenov, A. N. & Rubinstein, M. Thermoreversible gelation in solutions of associative polymers. 1. Statics. Macromolecules 31, 1373–1385 (1998).

    Article  CAS  Google Scholar 

  147. Lacombe, R. H. & Sanchez, I. C. Statistical thermodynamics of fluid mixtures. J. Phys. Chem. 80, 2568–2580 (1976).

    Article  CAS  Google Scholar 

  148. Ruzette, A., Banerjee, P. & Mayes, A. A simple model for baroplastic behavior in block copolymer melts. J. Chem. Phys. 114, 8205–8209 (2001).

    Article  CAS  Google Scholar 

  149. Ghasemi, M. et al. Panchromatic sequentially cast ternary polymer solar cells. Adv. Mater. 29, 1604603 (2017).

    Article  Google Scholar 

  150. Nam, M. et al. Long-term efficient organic photovoltaics based on quaternary bulk heterojunctions. Nat. Commun. 8, 14068 (2017).

    Article  CAS  Google Scholar 

  151. Gasparini, N., Salleo, A., McCulloch, I. & Baran, D. The role of the third component in ternary organic solar cells. Nat. Rev. Mater. 4, 229–242 (2019).

    Article  Google Scholar 

  152. Zhou, Z. et al. High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors. Nat. Energy 3, 952–959 (2018).

    Article  CAS  Google Scholar 

  153. Naveed, H. & Ma, W. Miscibility-driven optimization of nanostructures in ternary organic solar cells using non-fullerene acceptors. Joule 2, 621–641 (2018).

    Article  CAS  Google Scholar 

  154. Lu, L., Kelly, M. A., You, W. & Yu, L. Status and prospects for ternary organic photovoltaics. Nat. Photonics 9, 491 (2015).

    Article  CAS  Google Scholar 

  155. Yang, Y. et al. High-performance multiple-donor bulk heterojunction solar cells. Nat. Photonics 9, 190 (2015).

    Article  CAS  Google Scholar 

  156. Wang, Z. et al. From alloy-like to cascade blended structure: designing high-performance all-small-molecule ternary solar cells. J. Am. Chem. Soc. 140, 1549–1556 (2018).

    Article  CAS  Google Scholar 

  157. Qin, Y. P. et al. The performance-stability conundrum of BTP-based organic solar cells. Joule 5, 2129–2147 (2021).

    Article  CAS  Google Scholar 

  158. Matkar, R. A. & Kyu, T. Role of crystal–amorphous interaction in phase equilibria of crystal–amorphous polymer blends. J. Phys. Chem. B 110, 12728–12732 (2006).

    Article  CAS  Google Scholar 

  159. Collins, B. A. et al. Molecular miscibility of polymer–fullerene blends. J. Phys. Chem. Lett. 1, 3160–3166 (2010).

    Article  CAS  Google Scholar 

  160. Treat, N. D. et al. Polymer–fullerene miscibility: a metric for screening new materials for high-performance organic solar cells. J. Am. Chem. Soc. 134, 15869–15879 (2012).

    Article  CAS  Google Scholar 

  161. Sanchez, I. C. & Lacombe, R. H. Statistical thermodynamics of polymer solutions. Macromolecules 11, 1145–1156 (1978).

  162. Brandrup, J. & Immergut, E. H. Polymer Handbook 4th edn (Wiley, 2014).

  163. Isichenko, M. B. Percolation, statistical topography, and transport in random media. Rev. Mod. Phys. 64, 961–1043 (1992).

    Article  Google Scholar 

  164. Cahn, J. W. & Hilliard, J. E. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958).

    Article  CAS  Google Scholar 

  165. Frisch, H. L. & Stern, S. A. Diffusion of small molecules in polymers. Crit. Rev. Solid State Mater. Sci. 11, 123–187 (1983).

    Article  CAS  Google Scholar 

  166. Heriot, S. Y. & Jones, R. A. L. An interfacial instability in a transient wetting layer leads to lateral phase separation in thin spin-cast polymer-blend films. Nat. Mater. 4, 782–786 (2005).

    Article  CAS  Google Scholar 

  167. Ronsin, O. J. J. & Harting, J. Strict equivalence between Maxwell–Stefan and fast-mode theory for multicomponent polymer mixtures. Macromolecules 52, 6035–6044 (2019).

    Article  CAS  Google Scholar 

  168. Kramer, E. J., Green, P. & Palmstrem, C. J. Interdiffusion and marker movements in concentrated polymer–polymer diffusion couples. Polymer 25, 473–480 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.J.M. acknowledges the financial support from the Max-Planck Institute for Polymer Research (Mainz, Germany). N.S. thanks the National Science Foundation (DMR 1729737). Z.P. and H.A. gratefully acknowledge support from the U.S. Office of Naval Research (N000141712204 and N000142012155). The authors are indebted to many colleagues and collaborators for discussions and in particular to L. Ye for contributions to the initial draft of the manuscript and its figures.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. J.J.M., N.S. and H.A. contributed substantially to discussion of the content. J.J.M., N.S. and H.A. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Natalie Stingelin, Harald Ade or Jasper J. Michels.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Mats R. Andersson, Xian-Kai Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Z., Stingelin, N., Ade, H. et al. A materials physics perspective on structure–processing–function relations in blends of organic semiconductors. Nat Rev Mater 8, 439–455 (2023). https://doi.org/10.1038/s41578-023-00541-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00541-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing