Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Recycling of sodium-ion batteries

Subjects

Abstract

Sodium-ion batteries (SIBs) are promising electrical power sources complementary to lithium-ion batteries (LIBs) and could be crucial in future electric vehicles and energy storage systems. Spent LIBs and SIBs both face many of the same environmental and economic challenges in their recycling, but SIB recycling has a much higher economic barrier. Although LIB recycling can be profitable by recovering high-valued metals of lithium and cobalt, the lower material valuation of spent SIBs diminishes profitability and may hinder industrial recycling. Pre-emptive strategies to facilitate recycling spent SIBs should be made during the early commercialization stage to ensure that SIBs are designed for ease of recycling, low operation costs and optimum efficiency. This Perspective article summarizes the material components of SIBs, discusses strategies for their recycling and outlines the associated challenges and future outlook of SIB recycling. The insights presented should aid scientists and engineers in creating a circular economy for the SIB industry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Trends in batteries.
Fig. 2: Percentages of components and materials in SIBs.
Fig. 3: Materials utilized in SIBs and LIBs.
Fig. 4: Battery production, scrap generation and recycling spent batteries or scraps.
Fig. 5: State-of-the-art battery recycling issues.
Fig. 6: Prospective SIB recycling technologies and ideal outcome.

Similar content being viewed by others

References

  1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  2. Federal Consortium for Advanced Batteries. National blueprint for lithium batteries 2021–2030 (FCAB, 2021).

  3. Slowik, P., Lutsey N. & Hsu, C. How technology, recycling, and policy can mitigate supply risks to long-term transition to zero-emission vehicles (ICCT, 2020).

  4. Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).

    Article  CAS  Google Scholar 

  5. Lin, M. C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 324–328 (2015).

    Article  CAS  Google Scholar 

  6. Arroyo-de Dompablo, M. E., Ponrouch, A., Johansson, P. & Palacín, M. R. Achievements, challenges, and prospects of calcium batteries. Chem. Rev. 120, 6331–6357 (2019).

    Article  Google Scholar 

  7. Xu, C., Li, B., Du, H. & Kang, F. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 124, 957–959 (2012).

    Article  Google Scholar 

  8. Tarascon, J. M. Na-ion versus Li-ion batteries: complementarity rather than competitiveness. Joule 4, 1616–1620 (2020).

    Article  Google Scholar 

  9. Vaalma, C., Buchholz, D., Weil, M. & Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018).

    Article  Google Scholar 

  10. Contemporary Amperex Technology. CATL releases the first generation of sodium-ion batteries. CATL https://www.catl.com/news/994.html (2021).

  11. EVTank. White paper on the development of China’s sodium-ion battery industry. EVTank http://www.evtank.cn/DownloadDetail.aspx?ID=443 (2022).

  12. TOB New Energy. In 2023, the production capacity of sodium-ion batteries will increase by 10x. TOB https://www.tobmachine.com/in-2023-the-production-capacity-of-sodium-ion-batteries-will-increase-by-10x_n662 (2023).

  13. Castillo, S., Ansart, F., Laberty-Robert, C. & Portal, J. Advances in the recovering of spent lithium battery compounds. J. Power Sources 112, 247–254 (2002).

    Article  CAS  Google Scholar 

  14. Contestabile, M., Panero, S. & Scrosati, B. A laboratory-scale lithium battery recycling process. J. Power Sources 83, 75–78 (1999).

    Article  CAS  Google Scholar 

  15. Lain, M. J. Recycling of lithium ion cells and batteries. J. Power Sources 97–98, 736–738 (2001).

    Article  Google Scholar 

  16. Contestabile, M., Panero, S. & Scrosati, B. A laboratory-scale lithium-ion battery recycling process. J. Power Sources 92, 65–69 (2001).

    Article  CAS  Google Scholar 

  17. Azhari, L., Bong, S., Ma, X. & Wang, Y. Recycling for all solid-state lithium-ion batteries. Matter 3, 1845–1861 (2020).

    Article  Google Scholar 

  18. Li, W. et al. Thermally depolymerizable polyether electrolytes for convenient and low-cost recycling of LiTFSI. Angew. Chem. Int. Ed. 134, e202209 (2022).

    Google Scholar 

  19. Yin, Y. et al. Fire-extinguishing, recyclable liquefied gas electrolytes for temperature-resilient lithium-metal batteries. Nat. Energy 7, 548–559 (2022).

    Article  CAS  Google Scholar 

  20. Bauer, A. et al. The scale‐up and commercialization of nonaqueous Na‐ion battery technologies. Adv. Energy Mater. 8, 1702869 (2018).

    Article  Google Scholar 

  21. Chayambuka, K., Mulder, G., Danilov, D. L. & Notten, P. H. From Li-ion batteries toward Na-ion chemistries: challenges and opportunities. Adv. Energy Mater. 10, 2001310 (2020).

    Article  CAS  Google Scholar 

  22. Wang, P. F., You, Y., Yin, Y. X. & Guo, Y. G. Layered oxide cathodes for sodium‐ion batteries: phase transition, air stability, and performance. Adv. Energy Mater. 8, 1701912 (2018).

    Article  Google Scholar 

  23. Barpanda, P., Lander, L., Nishimura, S. I. & Yamada, A. Polyanionic insertion materials for sodium‐ion batteries. Adv. Energy Mater. 8, 1703055 (2018).

    Article  Google Scholar 

  24. Peng, J. et al. Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater. 34, 2108384 (2022).

    Article  CAS  Google Scholar 

  25. Hirsh, H. S. et al. Sodium‐ion batteries paving the way for grid energy storage. Adv. Energy Mater. 10, 2001274 (2020).

    CAS  Google Scholar 

  26. Irisarri, E., Ponrouch, A. & Palacin, M. R. Hard carbon negative electrode materials for sodium-ion batteries. J. Electrochem. Soc. 162, A2476 (2015).

    Article  CAS  Google Scholar 

  27. Bommier, C. & Ji, X. Electrolytes, SEI formation, and binders: a review of nonelectrode factors for sodium‐ion battery anodes. Small 14, 1703576 (2018).

    Article  Google Scholar 

  28. Sommerville, R., Shaw-Stewart, J., Goodship, V., Rowson, N. & Kendrick, E. A review of physical processes used in the safe recycling of lithium ion batteries. Sustain. Mater. Technol. 25, e00197 (2020).

    CAS  Google Scholar 

  29. Makuza, B., Tian, Q., Guo, X., Chattopadhyay, K. & Yu, D. Pyrometallurgical options for recycling spent lithium-ion batteries: a comprehensive review. J. Power Sources 491, 229622 (2021).

    Article  CAS  Google Scholar 

  30. Lu, Y., Peng, K. & Zhang, L. Sustainable recycling of electrode materials in spent Li-ion batteries through direct regeneration processes. ACS Est. Eng. 2, 586–605 (2022).

    Article  CAS  Google Scholar 

  31. Zhao, Y. et al. Precise separation of spent lithium-ion cells in water without discharging for recycling. Energy Storage Mater. 45, 1092–1099 (2022).

    Article  Google Scholar 

  32. Zhao, Y. et al. A novel three-step approach to separate cathode components for lithium-ion battery recycling. Rare Met. 40, 1431–1436 (2021).

    Article  CAS  Google Scholar 

  33. Zhao, Y. et al. Regeneration and reutilization of cathode materials from spent lithium-ion batteries. Chem. Eng. J. 383, 123089 (2020).

    Article  CAS  Google Scholar 

  34. Yao, Y. et al. Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review. ACS Sustain. Chem. Eng. 6, 13611–13627 (2018).

    Article  CAS  Google Scholar 

  35. Shen, Y. Recycling cathode materials of spent lithium-ion batteries for advanced catalysts production. J. Power Sources 528, 231220 (2022).

    Article  CAS  Google Scholar 

  36. Du, H. et al. Easily recyclable lithium-ion batteries: recycling-oriented cathode design using highly soluble LiFeMnPO4 with a water-soluble binder. Battery Energy 2, 20230011 (2023).

    Article  CAS  Google Scholar 

  37. Ma, L. A., Naylor, A. J., Nyholm, L. & Younesi, R. Strategies for mitigating dissolution of solid electrolyte interphases in sodium‐ion batteries. Angew. Chem. Int. Ed. 60, 4855–4863 (2021).

    Article  CAS  Google Scholar 

  38. Gupta, V. et al. Scalable direct recycling of cathode black mass from spent lithium-ion batteries. Adv. Energy Mater. 13, 2203093 (2023).

    Article  CAS  Google Scholar 

  39. Ojanen, S., Lundström, M., Santasalo-Aarnio, A. & Serna-Guerrero, R. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion battery recycling. Waste Manag. 76, 242–249 (2018).

    Article  CAS  Google Scholar 

  40. Bai, Y., Muralidharan, N., Li, J., Essehli, R. & Belharouak, I. Sustainable direct recycling of lithium‐ion batteries via solvent recovery of electrode materials. ChemSusChem 13, 5664–5670 (2020).

    Article  CAS  Google Scholar 

  41. He, Y. et al. A critical review of current technologies for the liberation of electrode materials from foils in the recycling process of spent lithium-ion batteries. Sci. Total Environ. 766, 142382 (2021).

    Article  CAS  Google Scholar 

  42. Du, H. et al. Recovery of lithium salt from spent lithium‐ion battery by less polar solvent wash and water extraction. Carbon Neutralization https://doi.org/10.1002/cnl2.73 (2023).

  43. Park, J., Park, S., Beak, M., Jeong, S. & Kwon, K. Impacts of residual electrolyte components of spent lithium-ion batteries on the physical/electrochemical properties of resynthesized cathode active materials. J. Clean. Prod. 379, 134570 (2022).

    Article  CAS  Google Scholar 

  44. Peng, C. et al. Role of impurity copper in Li-ion battery recycling to LiCoO2 cathode materials. J. Power Sources 450, 227630 (2020).

    Article  CAS  Google Scholar 

  45. Lu, J. et al. Surplus energy utilization of spent lithium‐ion batteries for high‐profit organolithiums. Carbon Energy 5, 6058 (2022).

    Google Scholar 

  46. Xu, P. et al. Efficient direct recycling of lithium-ion battery cathodes by targeted healing. Joule 4, 2609–2626 (2020).

    Article  CAS  Google Scholar 

  47. European Commission. Ecodesign for sustainable products (European Commission, 2022).

  48. Han, F., Gao, T., Zhu, Y., Gaskell, K. J. & Wang, C. A battery made from a single material. Adv. Mater. 27, 3473–3483 (2015).

    Article  CAS  Google Scholar 

  49. Ma, X. et al. Recycled cathode materials enabled superior performance for lithium-ion batteries. Joule 5, 2955–2970 (2021).

    Article  CAS  Google Scholar 

  50. Sohn, J. S., Yang, D. H., Shin, S. M. & Kang, J. G. Recovery of cobalt in sulfuric acid leaching solution using oxalic acid. Geosyst. Eng. 9, 81–86 (2006).

    Article  Google Scholar 

  51. Dai, Q. et al. Everbatt: a closed-loop battery recycling cost and environmental impacts model (ANL, 2019).

Download references

Acknowledgements

This research was financially supported by the Key-Area Research and Development Program of Guangdong Province (No. 2020B090919003), National Natural Science Foundation of China (Nos 52261160384 and 52072208), Fundamental Research Project of Shenzhen (No. JCYJ20220818101004009), Local Innovative and Research Teams Project of Guandong Pearl River Talents Program (No. 2017BT01N111), Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515110531) and China Postdoctoral Science Foundation (No. 2022M721800).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and B.L. planned and supervised this project. Y.Z., J.W., T.L., N.T. and Y.K. collected and discussed recycling related data. Y.Z., J.L., H.D., C.L. and Y.K. discussed practical sodium-ion battery technology and their possible recycling strategies. Y.Z., Y.K., J.W., N.T., F.K. and B.L. summarized battery recycling strategies, challenges and future perspectives. Y.Z. wrote and edited the manuscript with N.T., J.W. and B.L. All authors approved the final manuscript.

Corresponding author

Correspondence to Baohua Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Renjie Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

2015 Paris Climate Agreement: https://unfccc.int/sites/default/files/english_paris_agreement.pdf

2017 Climate Act: https://cdn.climatepolicyradar.org/navigator/SWE/2017/the-swedish-climate-policy-framework_4d29ca793f2bf5c7782ed55f5f62c434.pdf

2060 Carbon Neutralization Plan: https://en.ndrc.gov.cn/policies/202110/t20211024_1300725.html

Contemporary Amperex Technology: https://www.catl.com

Faradion: https://faradion.co.uk

HiNa: https://www.hinabattery.com

icbattery: http://www.icbattery.com

Natron Energy: https://natron.energy

Tiamat: http://www.tiamat-energy.com

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Kang, Y., Wozny, J. et al. Recycling of sodium-ion batteries. Nat Rev Mater 8, 623–634 (2023). https://doi.org/10.1038/s41578-023-00574-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00574-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing