Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Long-term operating stability in perovskite photovoltaics

Abstract

Perovskite solar cells have demonstrated the efficiencies needed for technoeconomic competitiveness. With respect to the demanding stability requirements of photovoltaics, many techniques have been used to increase the stability of perovskite solar cells, and tremendous improvements have been made over the course of a decade of research. Nevertheless, the still-limited stability of perovskite solar cells remains to be fully understood and addressed. In this Review, we summarize progress in single-junction, lead-based perovskite photovoltaic stability and discuss the origins of chemical lability and how this affects stability under a range of relevant stressors. We highlight categories of prominent stability-enhancing strategies, including compositional tuning, barrier layers and the fabrication of stable transport layers. In the conclusion of this Review, we discuss the challenges that remain, and we offer a perspective on how the field can continue to advance to 25-year and 30-year stable perovskite solar modules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The unusual properties of perovskite semiconductors.
Fig. 2: Timeline for stability in perovskite solar cells.
Fig. 3: Factors affecting perovskite solar cell stability.
Fig. 4: Strategies for stable perovskite solar cells.
Fig. 5: Overview of perovskite solar cell stability.
Fig. 6: Accelerated ageing.

Similar content being viewed by others

References

  1. Jena, A. K. et al. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019).

    Article  CAS  Google Scholar 

  2. Zhu, H. et al. Efficient and stable large bandgap MAPbBr3 perovskite solar cell attaining an open circuit voltage of 1.65 V. ACS Energy Lett. 7, 1112–1119 (2021).

    Article  Google Scholar 

  3. Green, M. A. et al. Solar cell efficiency tables (version 60). Prog. Photovolt. Res. Appl. 30, 687–701 (2022).

    Article  Google Scholar 

  4. Dualeh, A. et al. Thermal behavior of methylammonium lead-trihalide perovskite photovoltaic light harvesters. Chem. Mater. 26, 6160–6164 (2014).

    Article  CAS  Google Scholar 

  5. Conings, B. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015).

    Article  Google Scholar 

  6. Zhao, X. et al. Room-temperature-processed fullerene single-crystalline nanoparticles for high-performance flexible perovskite photovoltaics. J. Mater. Chem. A 7, 1509–1518 (2019).

    Article  CAS  Google Scholar 

  7. Kim, G. Y. et al. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat. Mater. 17, 445–449 (2018).

    Article  CAS  Google Scholar 

  8. Leijtens, T. et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013).

    Article  Google Scholar 

  9. Sidhik, S. et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377, 1425–1430 (2022).

    Article  CAS  Google Scholar 

  10. Zhao, X. et al. Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science 377, 307–310 (2022).

    Article  CAS  Google Scholar 

  11. Grancini, G. et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017).

    Article  CAS  Google Scholar 

  12. Wang, Y. et al. Encapsulation and stability testing of perovskite solar cells for real life applications. ACS Mater. Au 2, 215–236 (2022).

    Article  CAS  Google Scholar 

  13. Brandt, R. E. et al. Searching for ‘defect-tolerant’ photovoltaic materials: combined theoretical and experimental screening. Chem. Mater. 29, 4667–4674 (2017).

    Article  CAS  Google Scholar 

  14. Huang, Y.-T. et al. Perovskite-inspired materials for photovoltaics and beyond — from design to devices. Nanotechnology 32, 132004 (2021).

    Article  CAS  Google Scholar 

  15. Macpherson, S. et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 607, 294–300 (2022).

    Article  CAS  Google Scholar 

  16. Fabini, D. H. et al. The underappreciated lone pair in halide perovskites underpins their unusual properties. MRS Bull. 45, 467–477 (2020).

    Article  Google Scholar 

  17. Yaffe, O. et al. Local polar fluctuations in lead halide perovskite crystals. Phys. Rev. Lett. 118, 136001 (2017).

    Article  Google Scholar 

  18. Bertoluzzi, L. et al. Mobile ion concentration measurement and open-access band diagram simulation platform for halide perovskite solar cells. Joule 4, 109–127 (2020).

    Article  CAS  Google Scholar 

  19. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    Article  CAS  Google Scholar 

  20. Chen, B. et al. Origin of JV hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 7, 905–917 (2016).

    Article  CAS  Google Scholar 

  21. Tress, W. et al. Understanding the rate-dependent JV hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015).

    Article  CAS  Google Scholar 

  22. Zhao, Y. et al. A bilayer conducting polymer structure for planar perovskite solar cells with over 1,400 hours operational stability at elevated temperatures. Nat. Energy 7, 144–152 (2022).

    Article  CAS  Google Scholar 

  23. Yang, T.-Y. et al. The significance of ion conduction in a hybrid organic–inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. 54, 7905–7910 (2015).

    Article  CAS  Google Scholar 

  24. Senocrate, A. et al. Thermochemical stability of hybrid halide perovskites. ACS Energy Lett. 4, 2859–2870 (2019).

    Article  CAS  Google Scholar 

  25. Boyd, C. C. et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2018).

    Article  Google Scholar 

  26. Lehmann, F. et al. The phase diagram of a mixed halide (Br, I) hybrid perovskite obtained by synchrotron X-ray diffraction. RSC Adv. 9, 11151–11159 (2019).

    Article  CAS  Google Scholar 

  27. Zhu, T. et al. Coupling photogeneration with thermodynamic modeling of light-induced alloy segregation enables the discovery of stabilizing dopants. Preprint at https://doi.org/10.48550/arXiv.2301.12627 (2023).

  28. Brivio, F. et al. Thermodynamic origin of photoinstability in the CH3NH3Pb(I1–xBrx)3 hybrid halide perovskite alloy. J. Phys. Chem. Lett. 7, 1083–1087 (2016).

    Article  CAS  Google Scholar 

  29. Bischak, C. G. et al. Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Lett. 17, 1028–1033 (2017).

    Article  CAS  Google Scholar 

  30. Wang, X. et al. Suppressed phase separation of mixed-halide perovskites confined in endotaxial matrices. Nat. Commun. 10, 695 (2019).

    Article  CAS  Google Scholar 

  31. Belisle, R. A. et al. Impact of surfaces on photoinduced halide segregation in mixed-halide perovskites. ACS Energy Lett. 3, 2694–2700 (2018).

    Article  CAS  Google Scholar 

  32. Barker, A. J. et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2, 1416–1424 (2017).

    Article  CAS  Google Scholar 

  33. Kerner, R. A. et al. The role of halide oxidation in perovskite halide phase separation. Joule 5, 2273–2295 (2021).

    Article  CAS  Google Scholar 

  34. DuBose, J. T. & Kamat, P. V. Hole trapping in halide perovskites induces phase segregation. Acc. Mater. Res. 3, 761–771 (2022).

    Article  CAS  Google Scholar 

  35. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article  Google Scholar 

  36. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–320 (2013).

    Article  CAS  Google Scholar 

  37. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019).

    Article  CAS  Google Scholar 

  38. Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).

    Article  CAS  Google Scholar 

  39. Zhao, Y. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022).

    Article  CAS  Google Scholar 

  40. Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016).

    Article  CAS  Google Scholar 

  41. Jost, M. et al. Perovskite solar cells go outdoors: field testing and temperature effects on energy yield. Adv. Energy Mater. 10, 2000454 (2020).

    Article  CAS  Google Scholar 

  42. Emery, Q. et al. Encapsulation and outdoor testing of perovskite solar cells: comparing industrially relevant process with a simplified lab procedure. ACS Appl. Mater. Interfaces 14, 5159–5167 (2022).

    Article  CAS  Google Scholar 

  43. Pescetelli, S. et al. Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm. Nat. Energy 7, 597–607 (2022).

    Article  Google Scholar 

  44. Li, Z. et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28, 284–292 (2016).

    Article  Google Scholar 

  45. Stoumpos, C. C. et al. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Article  CAS  Google Scholar 

  46. Fabini, D. H. et al. Reentrant structural and optical properties and large positive thermal expansion in perovskite formamidinium lead iodide. Angew. Chem. Int. Ed. 55, 15392–15396 (2016).

    Article  CAS  Google Scholar 

  47. Cao, D. H. et al. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137, 7843–7850 (2015).

    Article  CAS  Google Scholar 

  48. Choi, K. et al. Heat dissipation effects on the stability of planar perovskite solar cells. Energy Environ. Sci. 13, 5059–5067 (2020).

    Article  CAS  Google Scholar 

  49. Brunetti, B. et al. On the thermal and thermodynamic (in)stability of methylammonium lead halide perovskites. Sci. Rep. 6, 31896 (2016).

    Article  CAS  Google Scholar 

  50. Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

    Article  CAS  Google Scholar 

  51. Liu, Z. et al. Efficient and stable FA-rich perovskite photovoltaics: from material properties to device optimization. Adv. Energy Mater. 12, 2200111 (2022).

    Article  CAS  Google Scholar 

  52. Juarez-Perez, E. J. et al. Thermal degradation of formamidinium based lead halide perovskites into sym-triazine and hydrogen cyanide observed by coupled thermogravimetry–mass spectrometry analysis. J. Mater. Chem. A 7, 16912–16919 (2019).

    Article  CAS  Google Scholar 

  53. Pang, S. et al. NH2CH═NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26, 1485–1491 (2014).

    Article  CAS  Google Scholar 

  54. Burwig, T. et al. Crystal phases and thermal stability of co-evaporated CsPbX3 (X = I, Br) thin films. J. Phys. Chem. Lett. 9, 4808–4813 (2018).

    Article  CAS  Google Scholar 

  55. Lee, S.-W. et al. UV degradation and recovery of perovskite solar cells. Sci. Rep. 6, 38150 (2016).

    Article  CAS  Google Scholar 

  56. Wang, Z. et al. Recent advances and perspectives of photostability for halide perovskite solar cells. Adv. Opt. Mater. 10, 2101822 (2022).

    Article  CAS  Google Scholar 

  57. Lang, F. et al. Influence of radiation on the properties and the stability of hybrid perovskites. Adv. Mater. 30, 1702905 (2018).

    Article  Google Scholar 

  58. Juarez-Perez, E. J. et al. Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. J. Mater. Chem. A 6, 9604–9612 (2018).

    Article  CAS  Google Scholar 

  59. Dawood, R. I. et al. The photodecomposition of lead iodide. Proc. R. Soc. Lond. A 284, 272–288 (1965).

    Article  CAS  Google Scholar 

  60. Nickel, N. H. et al. Unraveling the light-induced degradation mechanisms of CH3NH3PbI3 perovskite films. Adv. Electron. Mater. 3, 1700158 (2017).

    Article  Google Scholar 

  61. Donakowski, A. et al. Improving photostability of cesium-doped formamidinium lead triiodide perovskite. ACS Energy Lett. 6, 574–580 (2021).

    Article  CAS  Google Scholar 

  62. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    Article  CAS  Google Scholar 

  63. Mahesh, S. et al. Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258–267 (2020).

    Article  CAS  Google Scholar 

  64. Bai, Y. et al. Initializing film homogeneity to retard phase segregation for stable perovskite solar cells. Science 378, 747–754 (2022).

    Article  CAS  Google Scholar 

  65. Lan, D. et al. Combatting temperature and reverse-bias challenges facing perovskite solar cells. Joule 6, 1782–1797 (2022).

    Article  CAS  Google Scholar 

  66. Bowring, A. R. et al. Reverse bias behavior of halide perovskite solar cells. Adv. Energy Mater. 8, 1702365 (2018).

    Article  Google Scholar 

  67. Bertoluzzi, L. et al. Incorporating electrochemical halide oxidation into drift-diffusion models to explain performance losses in perovskite solar cells under prolonged reverse bias. Adv. Energy Mater. 11, 2002614 (2021).

    Article  CAS  Google Scholar 

  68. Razera, R. A. Z. et al. Instability of p-i-n perovskite solar cells under reverse bias. J. Mater. Chem. A 8, 242–250 (2020).

    Article  CAS  Google Scholar 

  69. Wolf, E. J. et al. Designing modules to prevent reverse bias degradation in perovskite solar cells when partial shading occurs. Sol. RRL 6, 2100239 (2022).

    Article  CAS  Google Scholar 

  70. Ni, Z. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020).

    Article  CAS  Google Scholar 

  71. Wang, J. et al. Photoinduced dynamic defects responsible for the giant, reversible, and bidirectional light-soaking effect in perovskite solar cells. J. Phys. Chem. Lett. 12, 9328–9335 (2021).

    Article  CAS  Google Scholar 

  72. Xu, B. et al. Bifunctional spiro-fluorene/heterocycle cored hole-transporting materials: role of the heteroatom on the photovoltaic performance of perovskite solar cells. Chem. Eng. J. 431, 133371 (2022).

    Article  CAS  Google Scholar 

  73. Luo, D. et al. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44–60 (2019).

    Article  Google Scholar 

  74. Reichert, S. et al. Probing the ionic defect landscape in halide perovskite solar cells. Nat. Commun. 11, 6098 (2020).

    Article  CAS  Google Scholar 

  75. Xue, J. et al. The surface of halide perovskites from nano to bulk. Nat. Rev. Mater. 5, 809–827 (2020).

    Article  CAS  Google Scholar 

  76. Azpiroz, J. M. et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

    Article  CAS  Google Scholar 

  77. Chen, C. et al. Arylammonium-assisted reduction of the open-circuit voltage deficit in wide-bandgap perovskite solar cells: the role of suppressed ion migration. ACS Energy Lett. 5, 2560–2568 (2020).

    Article  CAS  Google Scholar 

  78. Liu, J. et al. Correlations between electrochemical ion migration and anomalous device behaviors in perovskite solar cells. ACS Energy Lett. 6, 1003–1014 (2021).

    Article  CAS  Google Scholar 

  79. McGovern, L. et al. Reduced barrier for ion migration in mixed-halide perovskites. ACS Appl. Energy Mater. 4, 13431–13437 (2021).

    Article  CAS  Google Scholar 

  80. Yang, S. et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473–478 (2019).

    Article  CAS  Google Scholar 

  81. Ahn, N. et al. Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 7, 13422 (2016).

    Article  CAS  Google Scholar 

  82. Wang, Q. et al. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy Environ. Sci. 10, 516–522 (2017).

    Article  CAS  Google Scholar 

  83. Samu, G. F. et al. Electrochemical hole injection selectively expels iodide from mixed halide perovskite films. J. Am. Chem. Soc. 141, 10812–10820 (2019).

    Article  CAS  Google Scholar 

  84. Ni, Z. et al. Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination. Nat. Energy 7, 65–73 (2022).

    Article  CAS  Google Scholar 

  85. Lin, C.-H. et al. Electrode engineering in halide perovskite electronics: plenty of room at the interfaces. Adv. Mater. 34, 2108616 (2022).

    Article  CAS  Google Scholar 

  86. Back, H. et al. Achieving long-term stable perovskite solar cells via ion neutralization. Energy Environ. Sci. 9, 1258–1263 (2016).

    Article  CAS  Google Scholar 

  87. Domanski, K. et al. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314 (2016).

    Article  CAS  Google Scholar 

  88. Guerrero, A. et al. Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano 10, 218–224 (2016).

    Article  CAS  Google Scholar 

  89. Zhen, C. et al. Strategies for modifying TiO2 based electron transport layers to boost perovskite solar cells. ACS Sustain. Chem. Eng. 7, 4586–4618 (2019).

    Article  CAS  Google Scholar 

  90. Sakhatskyi, K. et al. Assessing the drawbacks and benefits of ion migration in lead halide perovskites. ACS Energy Lett. 7, 3401–3414 (2022).

    Article  CAS  Google Scholar 

  91. Ito, S. et al. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J. Phys. Chem. C. 118, 16995–17000 (2014).

    Article  CAS  Google Scholar 

  92. Boldyreva, A. G. et al. Unraveling the impact of hole transport materials on photostability of perovskite films and p-i-n solar cells. ACS Appl. Mater. Interfaces 12, 19161–19173 (2020).

    Article  CAS  Google Scholar 

  93. Zhu, H. et al. Low-cost dopant additive-free hole-transporting material for a robust perovskite solar cell with efficiency exceeding 21%. ACS Energy Lett. 6, 208–215 (2021).

    Article  CAS  Google Scholar 

  94. Bauer, M. et al. Cyclopentadiene-based hole-transport material for cost-reduced stabilized perovskite solar cells with power conversion efficiencies over 23%. Adv. Energy Mater. 11, 2003953 (2021).

    Article  CAS  Google Scholar 

  95. Fu, Q. et al. Ionic dopant-free polymer alloy hole transport materials for high-performance perovskite solar cells. J. Am. Chem. Soc. 144, 9500–9509 (2022).

    Article  CAS  Google Scholar 

  96. Habisreutinger, S. N. et al. Dopant-free planar n-i-p perovskite solar cells with steady-state efficiencies exceeding 18%. ACS Energy Lett. 2, 622–628 (2017).

    Article  CAS  Google Scholar 

  97. Li, W. et al. Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination. J. Mater. Chem. A 2, 13587–13592 (2014).

    Article  CAS  Google Scholar 

  98. Tao, S. et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 10, 2560 (2019).

    Article  Google Scholar 

  99. Prasanna, R. et al. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 139, 11117–11124 (2017).

    Article  CAS  Google Scholar 

  100. Chen, H. et al. Advances to high-performance black-phase FAPbI3 perovskite for efficient and stable photovoltaics. Small Struct. 2, 2000130 (2021).

    Article  CAS  Google Scholar 

  101. Pellet, N. et al. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53, 3151–3157 (2014).

    Article  CAS  Google Scholar 

  102. Lee, J.-W. et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 1501310 (2015).

    Article  Google Scholar 

  103. Zhao, Y. et al. Discovery of temperature-induced stability reversal in perovskites using high-throughput robotic learning. Nat. Commun. 12, 2191 (2021).

    Article  CAS  Google Scholar 

  104. Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    Article  CAS  Google Scholar 

  105. Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

    Article  CAS  Google Scholar 

  106. Yun, H.-S. et al. Ethanol-based green-solution processing of α-formamidinium lead triiodide perovskite layers. Nat. Energy 7, 828–834 (2022).

    Article  CAS  Google Scholar 

  107. Doherty, T. A. S. et al. Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases. Science 374, 1598–1605 (2021).

    Article  CAS  Google Scholar 

  108. Mundt, L. E. et al. Mixing matters: nanoscale heterogeneity and stability in metal halide perovskite solar cells. ACS Energy Lett. 7, 471–480 (2021).

    Article  Google Scholar 

  109. Grancini, G. et al. Dimensional tailoring of hybrid perovskites for photovoltaics. Nat. Rev. Mater. 4, 4–22 (2019).

    Article  CAS  Google Scholar 

  110. Shi, E. et al. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem. Soc. Rev. 47, 6046–6072 (2018).

    Article  CAS  Google Scholar 

  111. Quan, L. N. et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138, 2649–2655 (2016).

    Article  CAS  Google Scholar 

  112. An, Y. et al. Structural stability of formamidinium- and cesium-based halide perovskites. ACS Energy Lett. 6, 1942–1969 (2021).

    Article  CAS  Google Scholar 

  113. Beal, R. E. et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 7, 746–751 (2016).

    Article  CAS  Google Scholar 

  114. Liu, Y. et al. Stabilization of highly efficient and stable phase-pure FAPbI3 perovskite solar cells by molecularly tailored 2D-overlayers. Angew. Chem. Int. Ed. 59, 15688 (2020).

    Article  CAS  Google Scholar 

  115. Fan, Y. et al. The chemical design in high-performance lead halide perovskite: additive vs dopant? J. Phys. Chem. Lett. 12, 11636–11644 (2021).

    Article  CAS  Google Scholar 

  116. Ling, X. et al. Combined precursor engineering and grain anchoring leading to MA-free, phase-pure, and stable α-formamidinium lead iodide perovskites for efficient solar cells. Angew. Chem. Int. Ed. 60, 27299–27306 (2021).

    Article  CAS  Google Scholar 

  117. Kim, M. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019).

    Article  CAS  Google Scholar 

  118. Xu, J. et al. Triple-halide wide band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097–1104 (2020).

    Article  CAS  Google Scholar 

  119. Chen, R. et al. Moisture-tolerant and high-quality α-CsPbI3 films for efficient and stable perovskite solar modules. J. Mater. Chem. A 8, 9597–9606 (2020).

    Article  CAS  Google Scholar 

  120. Li, T. et al. Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat. Energy 8, 610–620 (2023).

    Article  CAS  Google Scholar 

  121. Wang, Y. et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%. Science 365, 591–595 (2019).

    Article  CAS  Google Scholar 

  122. Chu, X. et al. Surface in situ reconstruction of inorganic perovskite films enabling long carrier lifetimes and solar cells with 21% efficiency. Nat. Energy 8, 372–380 (2023).

    Article  CAS  Google Scholar 

  123. Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).

    Article  CAS  Google Scholar 

  124. Zhang, S. et al. Barrier designs in perovskite solar cells for long-term stability. Adv. Energy Mater. 10, 2001610 (2020).

    Article  CAS  Google Scholar 

  125. Hou, F. et al. Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer. Nanoscale 7, 9427–9432 (2015).

    Article  CAS  Google Scholar 

  126. Kim, J. M. et al. Use of AuCl3-doped graphene as a protecting layer for enhancing the stabilities of inverted perovskite solar cells. Appl. Surf. Sci. 455, 1131–1136 (2018).

    Article  CAS  Google Scholar 

  127. Akin Kara, D. et al. Enhanced device efficiency and long-term stability via boronic acid-based self-assembled monolayer modification of ITO in planar perovskite solar cell. ACS Appl. Mater. Interfaces 10, 30000–30007 (2018).

    Article  CAS  Google Scholar 

  128. Wu, S. et al. A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat. Commun. 10, 1161 (2019).

    Article  Google Scholar 

  129. Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2022).

    Article  Google Scholar 

  130. Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

    Article  CAS  Google Scholar 

  131. Wu, Z. et al. Highly efficient and stable perovskite solar cells via modification of energy levels at the perovskite/carbon electrode interface. Adv. Mater. 31, 1804284 (2019).

    Article  Google Scholar 

  132. McGott, D. L. et al. 3D/2D passivation as a secret to success for polycrystalline thin-film solar cells. Joule 5, 1057–1073 (2021).

    Article  CAS  Google Scholar 

  133. Lintangpradipto, M. N. et al. Size-controlled CdSe quantum dots to boost light harvesting capability and stability of perovskite photovoltaic cells. Nanoscale 9, 10075–10083 (2017).

    Article  CAS  Google Scholar 

  134. Kot, M. et al. Room temperature atomic layer deposited Al2O3 improves perovskite solar cells efficiency over time. ChemSusChem 11, 3640–3648 (2018).

    Article  CAS  Google Scholar 

  135. Palmstrom, A. F. et al. Interfacial effects of tin oxide atomic layer deposition in metal halide perovskite photovoltaics. Adv. Energy Mater. 8, 1800591 (2018).

    Article  Google Scholar 

  136. Tan, F. et al. In situ back-contact passivation improves photovoltage and fill factor in perovskite solar cells. Adv. Mater. 31, 1807435 (2019).

    Article  Google Scholar 

  137. He, Q. et al. Highly efficient and stable perovskite solar cells enabled by low-cost industrial organic pigment coating. Angew. Chem. Int. Ed. 60, 2485–2492 (2021).

    Article  CAS  Google Scholar 

  138. Wu, Y. et al. Interface modification to achieve high-efficiency and stable perovskite solar cells. Chem. Eng. J. 433, 134613 (2022).

    Article  CAS  Google Scholar 

  139. Wu, Y. et al. Realizing high-efficiency perovskite solar cells by passivating triple-cation perovskite films. Sol. RRL 6, 2200115 (2022).

    Article  CAS  Google Scholar 

  140. Zhu, H. et al. Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency. Adv. Mater. 32, 1907757 (2020).

    Article  CAS  Google Scholar 

  141. Chen, H. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photonics 16, 352–358 (2022).

    Article  CAS  Google Scholar 

  142. Azmi, R. et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022).

    Article  CAS  Google Scholar 

  143. Jang, Y.-W. et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63–71 (2021).

    Article  CAS  Google Scholar 

  144. Li, Z. et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022).

    Article  CAS  Google Scholar 

  145. Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018).

    Article  CAS  Google Scholar 

  146. Zhu, H. et al. Suppressing defects through thiadiazole derivatives that modulate CH3NH3PbI3 crystal growth for highly stable perovskite solar cells under dark conditions. J. Mater. Chem. A 6, 4971–4980 (2018).

    Article  CAS  Google Scholar 

  147. Zhou, T. et al. Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability. Adv. Mater. 34, 2200705 (2022).

    Article  CAS  Google Scholar 

  148. Yu, S. et al. Hydrazinium cation mixed FAPbI3-based perovskite with 1D/3D hybrid dimension structure for efficient and stable solar cells. Chem. Eng. J. 403, 125724 (2020).

    Article  Google Scholar 

  149. Rahman, S. I. et al. Grain boundary defect passivation of triple cation mixed halide perovskite with hydrazine-based aromatic iodide for efficiency improvement. ACS Appl. Mater. Interfaces 12, 41312–41322 (2020).

    Article  CAS  Google Scholar 

  150. Luo, J. et al. Application of ionic liquids and derived materials to high-efficiency and stable perovskite solar cells. ACS Mater. Lett. 4, 1684–1715 (2022).

    Article  CAS  Google Scholar 

  151. Lee, J.-W. et al. Lewis acid–base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 49, 311–319 (2016).

    Article  Google Scholar 

  152. Han, T.-H. et al. Perovskite–polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 10, 520 (2019).

    Article  CAS  Google Scholar 

  153. Lao, Y. et al. Multifunctional π-conjugated additives for halide perovskite. Adv. Sci. 9, 2105307 (2022).

    Article  CAS  Google Scholar 

  154. Lin, Y. et al. π-Conjugated Lewis base: efficient trap-passivation and charge-extraction for hybrid perovskite solar cells. Adv. Mater. 29, 1604545 (2017).

    Article  Google Scholar 

  155. Bi, D. et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016).

    Article  CAS  Google Scholar 

  156. Wang, R. et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366, 1509–1513 (2019).

    Article  CAS  Google Scholar 

  157. Li, C. et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379, 690–694 (2023).

    Article  CAS  Google Scholar 

  158. Zheng, X. et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020).

    Article  CAS  Google Scholar 

  159. Kim, M. et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375, 302–306 (2022).

    Article  CAS  Google Scholar 

  160. Zhang, F. et al. The impact of peripheral groups on phenothiazine-based hole-transporting materials for perovskite solar cells. ACS Energy Lett. 3, 1145–1152 (2018).

    Article  CAS  Google Scholar 

  161. Zhang, F. et al. Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials. Nano Energy 41, 469–475 (2017).

    Article  CAS  Google Scholar 

  162. Dong, Y. et al. Simple 9,10-dihydrophenanthrene based hole-transporting materials for efficient perovskite solar cells. Chem. Eng. J. 402, 126298 (2020).

    Article  CAS  Google Scholar 

  163. Zhang, J. et al. 4-tert-Butylpyridine free hole transport materials for efficient perovskite solar cells: a new strategy to enhance the environmental and thermal stability. ACS Energy Lett. 3, 1677–1682 (2018).

    Article  CAS  Google Scholar 

  164. Shen, Y. et al. crowning lithium ions in hole transport layer toward stable perovskite solar cells. Adv. Mater. 34, 2200978 (2022).

    Article  CAS  Google Scholar 

  165. Han, Y. et al. Azide additive acting as a powerful locker for Li+ and TBP in spiro-OMeTAD toward highly efficient and stable perovskite solar cells. Nano Energy 96, 107072 (2022).

    Article  CAS  Google Scholar 

  166. Zhu, H. et al. Synergistic effect of fluorinated passivator and hole transport dopant enables stable perovskite solar cells with an efficiency near 24%. J. Am. Chem. Soc. 143, 3231–3237 (2021).

    Article  CAS  Google Scholar 

  167. Chen, C. et al. Cu(ii) complexes as p-type dopants in efficient perovskite solar cells. ACS Energy Lett. 2, 497–503 (2017).

    Article  CAS  Google Scholar 

  168. Zhang, T. et al. Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 377, 495–501 (2022).

    Article  CAS  Google Scholar 

  169. Zhu, H. et al. Dopant-free hole-transport material with a tetraphenylethene core for efficient perovskite solar cells. Energy Technol. 5, 1257–1264 (2017).

    Article  Google Scholar 

  170. Cao, J. et al. Ultrathin self-assembly two-dimensional metal-organic framework films as hole transport layers in ideal-bandgap perovskite solar cells. ACS Energy Lett. 7, 3362–3369 (2022).

    Article  CAS  Google Scholar 

  171. Zhang, H. et al. Low-temperature solution-processed CuCrO2 hole-transporting layer for efficient and photostable perovskite solar cells. Adv. Energy Mater. 8, 1702762 (2018).

    Article  Google Scholar 

  172. Arora, N. et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 358, 768–771 (2017).

    Article  CAS  Google Scholar 

  173. Fu, Q. et al. Management of donor and acceptor building blocks in dopant-free polymer hole transport materials for high-performance perovskite solar cells. Angew. Chem. Int. Ed. Engl. 134, e202210356 (2022).

    Article  Google Scholar 

  174. Rosenthal, A. L. A. D. et al. A ten year review of performance of photovoltaic systems. in Conference Record of the IEEE Photovoltaic Specialists Conference 1289–1291 (IEEE, 1993).

  175. Domanski, K. et al. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3, 61–67 (2018).

    Article  CAS  Google Scholar 

  176. Saliba, M. et al. Measuring aging stability of perovskite solar cells. Joule 2, 1019–1024 (2018).

    Article  CAS  Google Scholar 

  177. Wu, S. et al. 2D metal–organic framework for stable perovskite solar cells with minimized lead leakage. Nat. Nanotechnol. 15, 934–940 (2020).

    Article  CAS  Google Scholar 

  178. Haillant, O., Dumbleton, D. & Zielnik, A. An Arrhenius approach to estimating organic photovoltaic module weathering acceleration factors. Sol. Energy Mater. Sol. Cell 95, 1889–1895 (2011).

    Article  CAS  Google Scholar 

  179. Siegler, T. D. et al. Water-accelerated photooxidation of CH3NH3PbI3 perovskite. J. Am. Chem. Soc. 144, 5552–5561 (2022).

    Article  CAS  Google Scholar 

  180. Wang, Z. et al. High irradiance performance of metal halide perovskites for concentrator photovoltaics. Nat. Energy 3, 855–861 (2018).

    Article  CAS  Google Scholar 

  181. Tress, W. et al. Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions. Nat. Energy 4, 568–574 (2019).

    Article  CAS  Google Scholar 

  182. Anoop, K. M. et al. Bias-dependent stability of perovskite solar cells studied using natural and concentrated sunlight. Sol. RRL 4, 1900335 (2020).

    Article  CAS  Google Scholar 

  183. Shi, L. et al. Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells. Science 368, eaba2412 (2020).

    Article  CAS  Google Scholar 

  184. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  CAS  Google Scholar 

  185. Brenner, T. M. et al. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    Article  CAS  Google Scholar 

  186. Turedi, B. et al. Single-crystal perovskite solar cells exhibit close to half a millimeter electron diffusion length. Adv. Mater. 34, 2202390 (2022).

    Article  CAS  Google Scholar 

  187. Lee, K. J. et al. Domain-size-dependent residual stress governs the phase-transition and photoluminescence behavior of methylammonium lead iodide. Adv. Funct. Mater. 31, 2008088 (2021).

    Article  CAS  Google Scholar 

  188. Murali, B. et al. Single crystals: the next big wave of perovskite optoelectronics. ACS Mater. Lett. 2, 184–214 (2020).

    Article  CAS  Google Scholar 

  189. Li, N. et al. Engineering the hole extraction interface enables single-crystal MAPbI3 perovskite solar cells with efficiency exceeding 22% and superior indoor response. Adv. Energy Mater. 12, 2103241 (2022).

    Article  CAS  Google Scholar 

  190. Shen, Z. et al. Crystal-array-assisted growth of a perovskite absorption layer for efficient and stable solar cells. Energy Environ. Sci. 15, 1078–1085 (2022).

    Article  CAS  Google Scholar 

  191. Wang, Q. et al. Energy-down-shift CsPbCl3:Mn quantum dots for boosting the efficiency and stability of perovskite solar cells. ACS Energy Lett. 2, 1479–1486 (2017).

    Article  CAS  Google Scholar 

  192. Chen, S. et al. Stabilizing perovskite–substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021).

    Article  CAS  Google Scholar 

  193. Yang, Z. et al. Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Sci. Adv. 7, eabg3749 (2021).

    Article  CAS  Google Scholar 

  194. Zhang, D. et al. Degradation pathways in perovskite solar cells and how to meet international standards. Commun. Mater. 3, 58 (2022).

    Article  Google Scholar 

  195. Maier, J. Light gets ions going. Max Planck Institute for Solid State Research https://www.fkf.mpg.de/7824789/news_publication_12009261_transferred (18 April 2018).

  196. Huang, Z. et al. Suppressed ion migration in reduced-dimensional perovskites improves operating stability. ACS Energy Lett. 4, 1521–1527 (2019).

    Article  CAS  Google Scholar 

  197. Knight, A. J. et al. Halide segregation in mixed-halide perovskites: influence of A-site cations. ACS Energy Lett. 6, 799–808 (2021).

    Article  CAS  Google Scholar 

  198. Jacobsson, T. J. et al. An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nat. Energy 7, 107–115 (2022).

    Article  CAS  Google Scholar 

  199. Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022).

    Article  CAS  Google Scholar 

  200. Pitaro, M. et al. Tin halide perovskites: from fundamental properties to solar cells. Adv. Mater. 34, e2105844 (2021).

    Article  Google Scholar 

  201. Tao, L. et al. Stability of mixed-halide wide bandgap perovskite solar cells: strategies and progress. J. Energy Chem. 61, 395–415 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H.Z., S.T., M.N.L., S.M., B.C., E.H.S. and O.M.B. acknowledge funding support from Saudi Aramco. S.T. was supported by the Hatch Graduate scholarship.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. and S.T. contributed equally to the article. H.Z., S.T., M.N.L., S.M. and B.C. researched data for the article. All authors contributed substantially to discussion of the content. All authors wrote the article. O.M.B., H.Z., S.T., M.D.M. and E.H.S. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Edward H. Sargent or Osman M. Bakr.

Ethics declarations

Competing interests

M.D.M. is an adviser to Swift Solar. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Michael Saliba and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Teale, S., Lintangpradipto, M.N. et al. Long-term operating stability in perovskite photovoltaics. Nat Rev Mater 8, 569–586 (2023). https://doi.org/10.1038/s41578-023-00582-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00582-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing