Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging ultrafast techniques for studying quantum materials

Abstract

In quantum materials, emergent functional properties resulting from strong correlations or electronic topology offer opportunities for new applications. Over the past decade, ultrafast techniques such as photoemission, scattering and optical spectroscopies have complemented traditional control knobs such as temperature, pressure, chemical substitution and external fields, adding the time coordinate as a new dimension for understanding and engineering the properties of quantum materials out of equilibrium. Despite remarkable progress, there remains a host of open questions that will require detailed understanding of the non-equilibrium response of quantum materials to enable applications in areas such as clean energy production, energy storage and quantum computation and communication. In this Review, we survey three categories of emerging ultrafast spectroscopies for investigating condensed matter systems — attosecond transient absorption spectroscopy, solid-state high-harmonic generation spectroscopy and extreme ultraviolet second-harmonic generation spectroscopy — and we discuss their potential applications to the study of quantum materials. We analyse these ultrafast tools from the standpoint of open questions in quantum materials, highlighting the unique observables and capabilities these methods can offer to address them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of attosecond transient absorption spectroscopy, solid-state high-harmonic generation spectroscopy and extreme ultraviolet second-harmonic generation spectroscopy.
Fig. 2: Few-femtosecond electronic response in metals with varying degrees of electronic correlations studied by attosecond transient absorption spectroscopy.
Fig. 3: Optically induced spin and orbital momentum transfer studied by attosecond transient absorption spectroscopy.
Fig. 4: Coherent phonon dynamics studied by attosecond transient absorption spectroscopy.
Fig. 5: Characterization of MoS2 by solid-state high-harmonic generation spectroscopy.
Fig. 6: Solid-state high-harmonic generation spectroscopy as a tool to measure non-trivial topology.
Fig. 7: Extreme ultraviolet second-harmonic generation schemes and typical data.

Similar content being viewed by others

References

  1. Bovensiepen, U. & Kirchmann, P. Elementary relaxation processes investigated by femtosecond photoelectron spectroscopy of two-dimensional materials. Laser Photon. Rev. 6, 589–606 (2012).

    Article  Google Scholar 

  2. Smallwood, C. L., Kaindl, R. A. & Lanzara, A. Ultrafast angle-resolved photoemission spectroscopy of quantum materials. Europhys. Lett. 115, 27001 (2016).

    Article  Google Scholar 

  3. Zhou, X. et al. New developments in laser-based photoemission spectroscopy and its scientific applications: a key issues review. Rep. Prog. Phys. 81, 062101 (2018).

    Article  Google Scholar 

  4. Sobota, J. A., He, Y. & Shen, Z.-X. Angle-resolved photoemission studies of quantum materials. Rev. Mod. Phys. 93, 025006 (2021).

    Article  CAS  Google Scholar 

  5. Giannetti, C. et al. Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach. Adv. Phys. 65, 58–238 (2016).

    Article  CAS  Google Scholar 

  6. Orenstein, J. Ultrafast spectroscopy of quantum materials. Phys. Today 65, 44–50 (2012).

    Article  CAS  Google Scholar 

  7. Prasankumar, R. P. & Taylor, A. J. Optical Techniques for Solid-State Materials Characterization (CRC Press, 2011).

    Google Scholar 

  8. Cao, Y. et al. Ultrafast dynamics of spin and orbital correlations in quantum materials: an energy- and momentum-resolved perspective. Philos. Trans. R. Soc. A 377, 20170480 (2019).

    Article  CAS  Google Scholar 

  9. Buzzi, M., Först, M., Mankowsky, R. & Cavalleri, A. Probing dynamics in quantum materials with femtosecond X-rays. Nat. Rev. Mater. 3, 299–311 (2018).

    Article  CAS  Google Scholar 

  10. Mitrano, M. & Wang, Y. Probing light-driven quantum materials with ultrafast resonant inelastic X-ray scattering. Commun. Phys. 3, 184 (2020).

    Article  Google Scholar 

  11. Zong, A., Kogar, A. & Gedik, N. Unconventional light-induced states visualized by ultrafast electron diffraction and microscopy. MRS Bull. 46, 720–730 (2021).

    Article  CAS  Google Scholar 

  12. Filippetto, D. et al. Ultrafast electron diffraction: visualizing dynamic states of matter. Rev. Mod. Phys. 94, 045004 (2022).

    Article  CAS  Google Scholar 

  13. Wen, H., Cherukara, M. J. & Holt, M. V. Time-resolved X-ray microscopy for materials science. Annu. Rev. Mater. Res. 49, 389–415 (2019).

    Article  CAS  Google Scholar 

  14. de la Torre, A. et al. Colloquium: nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 (2021). This review contains a detailed account of established ultrafast techniques and the science they have enabled for studying quantum materials.

    Article  Google Scholar 

  15. Bao, C., Tang, P., Sun, D. & Zhou, S. Light-induced emergent phenomena in 2D materials and topological materials. Nat. Rev. Phys. 4, 33–48 (2022).

    Article  Google Scholar 

  16. Lloyd-Hughes, J. et al. The 2021 ultrafast spectroscopic probes of condensed matter roadmap. J. Phys. Condens. Matter 33, 353001 (2021).

    Article  CAS  Google Scholar 

  17. Disa, A. S., Nova, T. F. & Cavalleri, A. Engineering crystal structures with light. Nat. Phys. 17, 1087–1092 (2021).

    Article  CAS  Google Scholar 

  18. Zong, A. in Emergent States in Photoinduced Charge-Density-Wave Transitions 1–36 (Springer, 2021).

  19. Rudner, M. S. & Lindner, N. H. Band structure engineering and non-equilibrium dynamics in Floquet topological insulators. Nat. Rev. Phys. 2, 229–244 (2020).

    Article  CAS  Google Scholar 

  20. Oka, T. & Kitamura, S. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387–408 (2019).

    Article  Google Scholar 

  21. Jin, C. et al. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 13, 994–1003 (2018).

    Article  CAS  Google Scholar 

  22. Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    Article  CAS  Google Scholar 

  23. Zhang, J. & Averitt, R. Dynamics and control in complex transition metal oxides. Annu. Rev. Mater. Res. 44, 19–43 (2014).

    Article  CAS  Google Scholar 

  24. Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

    Article  Google Scholar 

  25. Baykusheva, D. R. et al. Ultrafast renormalization of the on-site Coulomb repulsion in a cuprate superconductor. Phys. Rev. X 12, 011013 (2022).

    CAS  Google Scholar 

  26. Alexandradinata, A. et al. The future of the correlated electron problem. Preprint at https://doi.org/10.48550/arXiv.2010.00584 (2020).

  27. Chowdhury, D., Georges, A., Parcollet, O. & Sachdev, S. Sachdev-Ye-Kitaev models and beyond: window into non-Fermi liquids. Rev. Mod. Phys. 94, 035004 (2022).

    Article  CAS  Google Scholar 

  28. Phillips, P. W., Hussey, N. E. & Abbamonte, P. Stranger than metals. Science 377, eabh4273 (2022).

    Article  CAS  Google Scholar 

  29. Kaplan, C. J. et al. Retrieval of the complex-valued refractive index of germanium near the M4,5 absorption edge. J. Opt. Soc. Am. B 36, 1716 (2019).

    Article  CAS  Google Scholar 

  30. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    Article  CAS  Google Scholar 

  31. Leone, S. R. et al. What will it take to observe processes in real time? Nat. Photon. 8, 162–166 (2014).

    Article  CAS  Google Scholar 

  32. Kraus, P. M., Zürch, M., Cushing, S. K., Neumark, D. M. & Leone, S. R. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat. Rev. Chem. 2, 82–94 (2018).

    Article  CAS  Google Scholar 

  33. Vinko, S. M. et al. Time-resolved XUV opacity measurements of warm dense aluminum. Phys. Rev. Lett. 124, 225002 (2020).

    Article  CAS  Google Scholar 

  34. Niedermayr, A. et al. Few-femtosecond dynamics of free-free opacity in optically heated metals. Phys. Rev. X 12, 021045 (2022).

    CAS  Google Scholar 

  35. Volkov, M. et al. Attosecond screening dynamics mediated by electron localization in transition metals. Nat. Phys. 15, 1145–1149 (2019). This work applies attosecond transient absorption spectroscopy to study photoinduced electron dynamics in elemental Ti, demonstrating the importance of a many-body theoretical treatment to correlated metallic systems.

    Article  CAS  Google Scholar 

  36. Petek, H. & Ogawa, S. Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals. Prog. Surf. Sci. 56, 239–310 (1997).

    Article  CAS  Google Scholar 

  37. Zürch, M. et al. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium. Nat. Commun. 8, 15734 (2017).

    Article  Google Scholar 

  38. Cushing, S. K. et al. Differentiating photoexcited carrier and phonon dynamics in the δ, L, and σ valleys of Si(100) with transient extreme ultraviolet spectroscopy. J. Phys. Chem. C 123, 3343–3352 (2019).

    Article  CAS  Google Scholar 

  39. Liu, H., Michelsen, J. M., Klein, I. M. & Cushing, S. K. Measuring photoexcited electron and hole dynamics in ZnTe and modeling excited state core-valence effects in transient XUV reflection spectroscopy. Preprint at https://doi.org/10.48550/arXiv.2108.02262 (2021).

  40. Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013). This work is the first attosecond transient absorption spectroscopy study of strong-field driven, sub-femtosecond coherent dynamics in solids, demonstrated in dielectric SiO2.

    Article  Google Scholar 

  41. Geneaux, R., Marroux, H. J. B., Guggenmos, A., Neumark, D. M. & Leone, S. R. Transient absorption spectroscopy using high harmonic generation: a review of ultrafast X-ray dynamics in molecules and solids. Philos. Trans. R. Soc. A 377, 20170463 (2019).

    Article  CAS  Google Scholar 

  42. Moulet, A. et al. Soft X-ray excitonics. Science 357, 1134–1138 (2017). This work presents the capability of attosecond transient absorption spectroscopy to directly probe core excitons and characterize their transient properties.

    Article  CAS  Google Scholar 

  43. Jager, M. F. et al. Tracking the insulator-to-metal phase transition in VO2 with few-femtosecond extreme UV transient absorption spectroscopy. Proc. Natl Acad. Sci. USA 114, 9558–9563 (2017). This work uncovers a record speed for the photoinduced metal-to-insulator transition in a correlated transition metal oxide, VO2.

    Article  CAS  Google Scholar 

  44. Rohde, G. et al. Ultrafast formation of a Fermi–Dirac distributed electron gas. Phys. Rev. Lett. 121, 256401 (2018).

    Article  CAS  Google Scholar 

  45. Schumacher, Z. et al. Ultrafast electron localization and screening in a transition metal dichalcogenide. Preprint at https://doi.org/10.48550/arXiv.2210.05465 (2022).

  46. Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    Article  CAS  Google Scholar 

  47. Roth, T. et al. Temperature dependence of laser-induced demagnetization in Ni: a key for identifying the underlying mechanism. Phys. Rev. X 2, 021006 (2012).

    Google Scholar 

  48. Schlauderer, S. et al. Temporal and spectral fingerprints of ultrafast all-coherent spin switching. Nature 569, 383–387 (2019).

    Article  CAS  Google Scholar 

  49. Disa, A. S. et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937–941 (2020).

    Article  CAS  Google Scholar 

  50. Siegrist, F. et al. Light-wave dynamic control of magnetism. Nature 571, 240–244 (2019). This work demonstrates the sub-femtosecond to few-femtosecond control of spin in an Ni-Pt multilayer sample through the optically induced spin and orbital momentum transfer (OISTR) mechanism.

    Article  CAS  Google Scholar 

  51. Tengdin, P. et al. Direct light-induced spin transfer between different elements in a spintronic Heusler material via femtosecond laser excitation. Sci. Adv. 6, eaaz1100 (2020).

    Article  CAS  Google Scholar 

  52. Hofherr, M. et al. Ultrafast optically induced spin transfer in ferromagnetic alloys. Sci. Adv. 6, eaay8717 (2020).

    Article  CAS  Google Scholar 

  53. Géneaux, R. et al. Attosecond time-domain measurement of core-level-exciton decay in magnesium oxide. Phys. Rev. Lett. 124, 207401 (2020).

    Article  Google Scholar 

  54. Porter, I. J. et al. Characterization of carrier cooling bottleneck in silicon nanoparticles by extreme ultraviolet (XUV) transient absorption spectroscopy. J. Phys. Chem. C 125, 9319–9329 (2021).

    Article  CAS  Google Scholar 

  55. Verkamp, M. et al. Carrier-specific hot phonon bottleneck in CH3NH3PbI3 revealed by femtosecond XUV absorption. J. Am. Chem. Soc. 143, 20176–20182 (2021).

    Article  CAS  Google Scholar 

  56. Carneiro, L. M. et al. Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3. Nat. Mater. 16, 819–825 (2017). This work displays the capability of attosecond transient absorption spectroscopy to capture photoinduced polarons and related electron–phonon dynamics.

    Article  CAS  Google Scholar 

  57. Géneaux, R. et al. Coherent energy exchange between carriers and phonons in Peierls-distorted bismuth unveiled by broadband XUV pulses. Phys. Rev. Res. 3, 033210 (2021).

    Article  Google Scholar 

  58. Attar, A. R. et al. Simultaneous observation of carrier-specific redistribution and coherent lattice dynamics in 2H-MoTe2 with femtosecond core-level spectroscopy. ACS Nano 14, 15829–15840 (2020).

    Article  CAS  Google Scholar 

  59. Sidiropoulos, T. P. H. et al. Probing the energy conversion pathways between light, carriers, and lattice in real time with attosecond core-level spectroscopy. Phys. Rev. X 11, 041060 (2021). This work displays a table-top high-energy attosecond transient absorption spectroscopy instrument reaching the carbon K-edge, and it identifies a previously unreported high-frequency phonon oscillation (75 THz) in graphite.

    CAS  Google Scholar 

  60. Heinrich, T. et al. Electronic and structural fingerprints of charge density wave excitations in extreme ultraviolet transient absorption spectroscopy. Preprint at https://doi.org/10.48550/arXiv.2211.03562 (2022).

  61. Zeiger, H. J. et al. Theory for displacive excitation of coherent phonons. Phys. Rev. B 45, 768–778 (1992).

    Article  CAS  Google Scholar 

  62. Giret, Y., Gellé, A. & Arnaud, B. Entropy driven atomic motion in laser-excited bismuth. Phys. Rev. Lett. 106, 155503 (2011).

    Article  CAS  Google Scholar 

  63. Gerber, S. et al. Femtosecond electron–phonon lock-in by photoemission and X-ray free-electron laser. Science 357, 71–75 (2017).

    Article  CAS  Google Scholar 

  64. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011). This work is the first to experimentally observe solid-state high-harmonic generation from a solid ZnO crystal.

    Article  CAS  Google Scholar 

  65. You, Y. S., Lu, J., Cunningham, E. F., Roedel, C. & Ghimire, S. Crystal orientation-dependent polarization state of high-order harmonics. Opt. Lett. 44, 530 (2019).

    Article  CAS  Google Scholar 

  66. Bionta, M. R. et al. Tracking ultrafast solid-state dynamics using high harmonic spectroscopy. Phys. Rev. Res. 3, 023250 (2021). This work develops the ultrafast capabilities of solid-state high-harmonic generation by observing coherent phonons and measuring phase fractions in the VO2 insulator-to-metal transition.

    Article  CAS  Google Scholar 

  67. Bowlan, P., Martinez-Moreno, E., Reimann, K., Elsaesser, T. & Woerner, M. Ultrafast terahertz response of multilayer graphene in the nonperturbative regime. Phys. Rev. B 89, 041408(R) (2014).

    Article  Google Scholar 

  68. Taucer, M. et al. Nonperturbative harmonic generation in graphene from intense midinfrared pulsed light. Phys. Rev. B 96, 195420 (2017).

    Article  Google Scholar 

  69. Yoshikawa, N., Tamaya, T. & Tanaka, K. High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science 356, 736–738 (2017).

    Article  CAS  Google Scholar 

  70. Feng, Y. et al. Semiclassical analysis of ellipticity dependence of harmonic yield in graphene. Phys. Rev. A 104, 43525 (2021).

    Article  CAS  Google Scholar 

  71. Mrudul, M. S. & Dixit, G. High-harmonic generation from monolayer and bilayer graphene. Phys. Rev. B 103, 94308 (2021).

    Article  CAS  Google Scholar 

  72. Zhang, Y. et al. Orientation dependence of high-order harmonic generation in graphene. Phys. Rev. A 104, 033110 (2021).

    Article  CAS  Google Scholar 

  73. Baudisch, M. et al. Ultrafast nonlinear optical response of Dirac fermions in graphene. Nat. Commun. 9, 1018 (2018).

    Article  Google Scholar 

  74. Rana, N., Mrudul, M. S., Kartashov, D., Ivanov, M. & Dixit, G. High-harmonic spectroscopy of coherent lattice dynamics in graphene. Phys. Rev. B 106, 064303 (2022).

    Article  CAS  Google Scholar 

  75. Liu, H. et al. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262–265 (2017).

    Article  CAS  Google Scholar 

  76. Yoshikawa, N. et al. Interband resonant high-harmonic generation by valley polarized electron–hole pairs. Nat. Commun. 10, 3709 (2019).

    Article  Google Scholar 

  77. Heide, C. et al. Probing electron–hole coherence in strongly driven 2D materials using high-harmonic generation. Optica 9, 512–516 (2022). This is a critical work in the advancement of solid-state high-harmonic generation spectroscopy that built on previous results from the model 2D system MoS2 by utilizing ultrafast pump–probe spectroscopy to study carrier dynamics.

    Article  CAS  Google Scholar 

  78. Yue, L. et al. Signatures of multiband effects in high-harmonic generation in monolayer MoS2. Phys. Rev. Lett. 129, 147401 (2022). This work is a key amalgamation of theory and experiment in solid-state high-harmonic generation (sHHG), demonstrating unique details in sHHG measurements that show the inherently multiband nature of sHHG.

    Article  CAS  Google Scholar 

  79. Lou, Z. et al. Ellipticity dependence of nonperturbative harmonic generation in few-layer MoS2. Opt. Commun. 469, 125769 (2020).

    Article  CAS  Google Scholar 

  80. Lv, Y. Y. et al. High-harmonic generation in Weyl semimetal β-WP2 crystals. Nat. Commun. 12, 6437 (2021).

    Article  CAS  Google Scholar 

  81. Baykusheva, D. et al. All-optical probe of three-dimensional topological insulators based on high-harmonic generation by circularly polarized laser fields. Nano Lett. 21, 8970–8978 (2021).

    Article  CAS  Google Scholar 

  82. Schmid, C. P. et al. Tunable non-integer high-harmonic generation in a topological insulator. Nature 593, 385–390 (2021).

    Article  CAS  Google Scholar 

  83. Heide, C. et al. Probing topological phase transitions using high-harmonic generation. Nat. Photonics 16, 620–624 (2022). This is a critical work applying solid-state high-harmonic generation spectroscopy and associated theory to study a topological phase transition in In-doped Bi2Se3.

    Article  CAS  Google Scholar 

  84. Ndabashimiye, G. et al. Solid-state harmonics beyond the atomic limit. Nature 534, 520–523 (2016).

    Article  CAS  Google Scholar 

  85. You, Y. S. et al. Laser waveform control of extreme ultraviolet high harmonics from solids. Opt. Lett. 42, 1816 (2017).

    Article  CAS  Google Scholar 

  86. Vampa, G. et al. Observation of backward high-harmonic emission from solids. Opt. Express 26, 12210–12218 (2018).

    Article  CAS  Google Scholar 

  87. Ghimire, S. Locking the waveform with a quartz crystal. Nat. Photonics 12, 256–257 (2018).

    Article  CAS  Google Scholar 

  88. Garg, M., Kim, H. Y. & Goulielmakis, E. Ultimate waveform reproducibility of extreme-ultraviolet pulses by high-harmonic generation in quartz. Nat. Photonics 12, 291–296 (2018).

    Article  CAS  Google Scholar 

  89. Orenstein, G. et al. Shaping electron–hole trajectories for solid-state high harmonic generation control. Opt. Express 27, 37835 (2019).

    Article  CAS  Google Scholar 

  90. Vampa, G. et al. Attosecond synchronization of extreme ultraviolet high harmonics from crystals. J. Phys. B 53, 144003 (2020).

    Article  CAS  Google Scholar 

  91. Lesko, D. M. B., Chang, K. F. & Diddams, S. A. High-sensitivity frequency comb carrier–envelope-phase metrology in solid state high harmonic generation. Optica 9, 1156–1162 (2022).

    Article  CAS  Google Scholar 

  92. Hollinger, R. et al. Polarization dependent excitation and high harmonic generation from intense mid-IR laser pulses in ZnO. Nanomaterials 11, 11 (2021).

    Google Scholar 

  93. Sing You, Y., Reis, D. A. & Ghimire, S. Anisotropic high-harmonic generation in bulk crystals. Nat. Phys. 13, 345–349 (2017).

    Article  Google Scholar 

  94. Ghimire, S. & Reis, D. A. High-harmonic generation from solids. Nat. Phys. 15, 10–16 (2019).

    Article  CAS  Google Scholar 

  95. Goulielmakis, E. & Brabec, T. High harmonic generation in condensed matter. Nat. Photonics 16, 411–421 (2022).

    Article  CAS  Google Scholar 

  96. Park, J., Subramani, A., Kim, S. & Ciappina, M. F. Recent trends in high-order harmonic generation in solids. Adv. Phys. X 7, 2003244 (2022). This recent review provides a good introduction to solid-state high-harmonic generation for the unfamiliar reader along with highlighting several key results in the field.

    Google Scholar 

  97. Yue, L. & Gaarde, M. B. Introduction to theory of high-harmonic generation in solids: tutorial. J. Opt. Soc. Am. B 39, 535–555 (2022). This work provides a detailed resource for the current state of the art in theory for modelling solid-state high-harmonic generation (sHHG), allowing the retrieval of critical material properties from sHHG spectra.

    Article  CAS  Google Scholar 

  98. Li, J. et al. Attosecond science based on high harmonic generation from gases and solids. Nat. Commun. 11, 2748 (2020). This review of attosecond science provides further reading on how solid-state high-harmonic generation along with attosecond transient absorption spectroscopy can push the limits of time resolution in ultrafast spectroscopy.

    Article  CAS  Google Scholar 

  99. Nakagawa, K. et al. Size-controlled quantum dots reveal the impact of intraband transitions on high-order harmonic generation in solids. Nat. Phys. 18, 874–878 (2022).

    Article  CAS  Google Scholar 

  100. Vampa, G. et al. All-optical reconstruction of crystal band structure. Phys. Rev. Lett. 115, 193603 (2015).

    Article  CAS  Google Scholar 

  101. Huttner, U., Huber, R., Kira, M. & Koch, S. W. Strong-field terahertz excitations in semiconductors. in Encyclopedia of Modern Optics 2nd edn (eds Guenther, B. D. & Steel, D. G.) 33–39 (Elsevier, 2018).

  102. Valovcin, D. C. et al. Optical frequency combs from high-order sideband generation. Opt. Express 26, 29807–29816 (2018).

    Article  CAS  Google Scholar 

  103. Langer, F. et al. Lightwave-driven quasiparticle collisions on a subcycle timescale. Nature 533, 225–229 (2016).

    Article  CAS  Google Scholar 

  104. Langer, F. et al. Lightwave valleytronics in a monolayer of tungsten diselenide. Nature 557, 76–80 (2018).

    Article  CAS  Google Scholar 

  105. Borsch, M. et al. Super-resolution lightwave tomography of electronic bands in quantum materials. Science 370, 1204–1207 (2020).

    Article  CAS  Google Scholar 

  106. Nishidome, H. et al. Control of high-harmonic generation by tuning the electronic structure and carrier injection. Nano Lett. 20, 6215–6221 (2020).

    Article  CAS  Google Scholar 

  107. Kobayashi, Y. et al. Polarization flipping of even-order harmonics in monolayer transition-metal dichalcogenides. Ultrafast Sci. 2021, 9820716 (2021).

    Article  Google Scholar 

  108. Guan, M.-X. et al. Cooperative evolution of intraband and interband excitations for high-harmonic generation in strained MoS2. Phys. Rev. B 99, 184306 (2019).

    Article  CAS  Google Scholar 

  109. He, Y. L., Guo, J., Gao, F. Y. & Liu, X. S. Dynamical symmetry and valley-selective circularly polarized high-harmonic generation in monolayer molybdenum disulfide. Phys. Rev. B 105, 024305 (2022).

    Article  CAS  Google Scholar 

  110. Wang, Z. et al. The roles of photo-carrier doping and driving wavelength in high harmonic generation from a semiconductor. Nat. Commun. 8, 1686 (2017).

    Article  Google Scholar 

  111. Neufeld, O., Zhang, J., De Giovannini, U., Hübener, H. & Rubio, A. Probing phonon dynamics with multidimensional high harmonic carrier–envelope-phase spectroscopy. Proc. Natl Acad. Sci. USA 119, e2204219119 (2022).

    Article  CAS  Google Scholar 

  112. Giustino F. Electron-phonon interactions from first principles. Rev. Mod. Phys. 89, 015003 (2017).

    Article  Google Scholar 

  113. Fujimoto, M. The Physics of Structural Phase Transitions (Springer, 2005).

  114. Uchida, K. et al. High-order harmonic generation and its unconventional scaling law in the Mott-insulating Ca2RuO4. Phys. Rev. Lett. 128, 127401 (2022).

    Article  CAS  Google Scholar 

  115. Alcalà, J. et al. High-harmonic spectroscopy of quantum phase transitions in a high-Tc superconductor. Proc. Natl Acad. Sci. USA 119, e2207766119 (2022).

    Article  Google Scholar 

  116. Luu, T. T. & Wörner, H. J. Measurement of the Berry curvature of solids using high-harmonic spectroscopy. Nat. Commun. 9, 916 (2018).

    Article  Google Scholar 

  117. Xiao, D., Chang, M. C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  CAS  Google Scholar 

  118. Bharti, A., Mrudul, M. S. & Dixit, G. High-harmonic spectroscopy of light-driven nonlinear anisotropic anomalous Hall effect in a Weyl semimetal. Phys. Rev. B 105, 155140 (2022).

    Article  CAS  Google Scholar 

  119. Yue, L. & Gaarde, M. B. Characterizing anomalous high-harmonic generation in solids. Preprint at https://doi.org/10.48550/arXiv.2206.11935 (2022).

  120. Baykusheva, D. et al. Strong-field physics in three-dimensional topological insulators. Phys. Rev. A 103, 23101 (2021).

    Article  CAS  Google Scholar 

  121. Silva, R. E., Blinov, I. V., Rubtsov, A. N., Smirnova, O. & Ivanov, M. High-harmonic spectroscopy of ultrafast many-body dynamics in strongly correlated systems. Nat. Photonics 12, 266–270 (2018).

    Article  CAS  Google Scholar 

  122. Murakami, Y., Eckstein, M. & Werner, P. High-harmonic generation in Mott insulators. Phys. Rev. Lett. 121, 57405 (2018).

    Article  CAS  Google Scholar 

  123. Tancogne-dejean, N., Sentef, M. A. & Rubio, A. Ultrafast modification of Hubbard U in a strongly correlated material: Ab initio high-harmonic generation in NiO. Phys. Rev. Lett. 121, 97402 (2018).

    Article  Google Scholar 

  124. Imai, S., Ono, A. & Ishihara, S. High harmonic generation in a correlated electron system. Phys. Rev. Lett. 124, 157404 (2020).

    Article  CAS  Google Scholar 

  125. Orthodoxou, C., Zaïr, A. & Booth, G. H. High harmonic generation in two-dimensional Mott insulators. npj Quantum Mater. 6, 76 (2021).

    Article  Google Scholar 

  126. Udono, M., Sugimoto, K., Kaneko, T. & Ohta, Y. Excitonic effects on high-harmonic generation in Mott insulators. Phys. Rev. B 105, L241108 (2022).

    Article  CAS  Google Scholar 

  127. Murakami, Y., Uchida, K., Koga, A., Tanaka, K. & Werner, P. Anomalous temperature dependence of high-harmonic generation in Mott insulators. Phys. Rev. Lett. 129, 157401 (2022).

    Article  CAS  Google Scholar 

  128. Shao, C. et al. High-harmonic generation approaching the quantum critical point of strongly correlated systems. Phys. Rev. Lett. 128, 47401 (2022).

    Article  CAS  Google Scholar 

  129. Takayoshi, S., Murakami, Y. & Werner, P. High-harmonic generation in quantum spin systems. Phys. Rev. B 99, 184303 (2019).

    Article  CAS  Google Scholar 

  130. Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).

    Article  Google Scholar 

  131. Pirro, P., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Advances in coherent magnonics. Nat. Rev. Mater. 6, 1114–1135 (2021).

    Article  Google Scholar 

  132. Zhang, G. P., Si, M. S., Murakami, M., Bai, Y. H. & George, T. F. Generating high-order optical and spin harmonics from ferromagnetic monolayers. Nat. Commun. 9, 916 (2018).

    Google Scholar 

  133. Lysne, M., Murakami, Y., Schüler, M. & Werner, P. High-harmonic generation in spin–orbit coupled systems. Phys. Rev. B 102, 081121(R) (2020).

    Article  Google Scholar 

  134. Torchinsky, D. H. & Hsieh, D. Rotational Anisotropy Nonlinear Harmonic Generation (Springer, 2017).

  135. Denev, S. et al. Magnetic color symmetry of lattice rotations in a diamagnetic material. Phys. Rev. Lett. 100, 257601 (2008).

    Article  CAS  Google Scholar 

  136. Padmanabhan, H. et al. Linear and nonlinear optical probe of the ferroelectric-like phase transition in a polar metal, LiOsO3. Appl. Phys. Lett. 113, 122906 (2018).

    Article  Google Scholar 

  137. Jin, W. et al. Observation of a ferro-rotational order coupled with second-order nonlinear optical fields. Nat. Phys. 16, 42–46 (2020).

    Article  CAS  Google Scholar 

  138. Fiebig, M., Pavlov, V. V. & Pisarev, R. V. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J. Opt. Soc. Am. B 22, 96 (2005).

    Article  CAS  Google Scholar 

  139. Fichera, B. T. et al. Second harmonic generation as a probe of broken mirror symmetry. Phys. Rev. B 101, 241106 (2020).

    Article  CAS  Google Scholar 

  140. Harter, J. W., Zhao, Z. Y., Yan, J.-Q., Mandrus, D. G. & Hsieh, D. A parity-breaking electronic nematic phase transition in the spin–orbit coupled metal Cd2Re2O7. Science 356, 295–299 (2017).

    Article  CAS  Google Scholar 

  141. Zhao, L. et al. A global inversion-symmetry-broken phase inside the pseudogap region of YBa2Cu3Oy. Nat. Phys. 13, 250–254 (2017).

    Article  CAS  Google Scholar 

  142. Laurita, N. J. et al. Evidence for a parity broken monoclinic ground state in the S = 1/2 Kagomé antiferromagnet herbertsmithite. Preprint at https://doi.org/10.48550/arXiv.1910.13606 (2019).

  143. Minerbi, E. & Shwartz, S. Difference frequency generation of ultraviolet from X-ray pulses in opaque materials. J. Opt. Soc. Am. B 36, 624 (2019).

    Article  CAS  Google Scholar 

  144. Glover, T. E. et al. X-ray and optical wave mixing. Nature 488, 603–608 (2012).

    Article  CAS  Google Scholar 

  145. Szlachetko, J. et al. Establishing nonlinearity thresholds with ultraintense X-ray pulses. Sci. Rep. 6, 33292 (2016).

    Article  CAS  Google Scholar 

  146. Beye, M. et al. Non-linear soft X-ray methods on solids with MUSIX — the multi-dimensional spectroscopy and inelastic X-ray scattering endstation. J. Condens. Matter Phys. 31, 014003 (2019).

    Article  CAS  Google Scholar 

  147. Bohinc, R. et al. Nonlinear XUV-optical transient grating spectroscopy at the Si L2,3-edge. Appl. Phys. Lett. 114, 181101 (2019).

    Article  Google Scholar 

  148. Shwartz, S. et al. X-ray second harmonic generation. Phys. Rev. Lett. 112, 163901 (2014). This work is the first to use X-rays to generate second-harmonic generation signals.

    Article  CAS  Google Scholar 

  149. Guetg, M. W. et al. Generation of high-power high-intensity short X-ray free-electron-laser pulses. Phys. Rev. Lett. 120, 014801 (2018).

    Article  CAS  Google Scholar 

  150. Huang, Z. & Kim, K.-J. Review of X-ray free-electron laser theory. Phys. Rev. ST Accel. Beams 10, 034801 (2007).

    Article  Google Scholar 

  151. Uzundal, C. B. et al. Polarization-resolved extreme-ultraviolet second-harmonic generation from LiNbO3. Phys. Rev. Lett. 127, 237402 (2021).

    Article  CAS  Google Scholar 

  152. Freund, I. & Levine, B. F. Parametric conversion of X-rays. Phys. Rev. Lett. 23, 854–857 (1969).

    Article  Google Scholar 

  153. Eisenberger, P. & McCall, S. L. X-ray parametric conversion. Phys. Rev. Lett. 26, 684–688 (1971).

    Article  CAS  Google Scholar 

  154. Fuchs, M. et al. Anomalous nonlinear X-ray Compton scattering. Nat. Phys. 11, 964–970 (2015).

    Article  CAS  Google Scholar 

  155. Lam, R. K. et al. Soft X-ray second harmonic generation as an interfacial probe. Phys. Rev. Lett. 120, 023901 (2018). This work first proved the applicability of extreme ultraviolet second-harmonic generation as a surface-sensitive probe.

    Article  CAS  Google Scholar 

  156. Yamamoto, S. et al. Element selectivity in second-harmonic generation of GaFeO3 by a soft-X-ray free-electron laser. Phys. Rev. Lett. 120, 223902 (2018).

    Article  CAS  Google Scholar 

  157. Schwartz, C. P. et al. Angstrom-resolved interfacial structure in buried organic–inorganic junctions. Phys. Rev. Lett. 127, 096801 (2021). This work further demonstrates the interface sensitivity of extreme ultraviolet second-harmonic generation by applying the technique to buried interfaces in a boron–parylene heterojunction.

    Article  CAS  Google Scholar 

  158. Berger, E. et al. Extreme ultraviolet second harmonic generation spectroscopy in a polar metal. Nano Lett. 21, 6095–6101 (2021). This work uses the element-specific symmetry sensitivity of extreme ultraviolet second-harmonic generation to observe Li displacement in the polar metal LiOsO3.

    Article  CAS  Google Scholar 

  159. Anderson, P. W. & Blount, E. I. Symmetry considerations on martensitic transformations: ‘ferroelectric’ metals? Phys. Rev. Lett. 14, 532–532 (1965).

    Article  Google Scholar 

  160. Shi, Y. et al. A ferroelectric-like structural transition in a metal. Nat. Mater. 12, 1024–1027 (2013).

    Article  CAS  Google Scholar 

  161. Sumi, T. et al. Separating non-linear optical signals of a sample from high harmonic radiation in a soft X-ray free electron laser. e-J. Surf. Sci. Nanotechnol. 20, 31–35 (2022).

    Article  CAS  Google Scholar 

  162. Helk, T., Zürch, M. & Spielmann, C. Perspective: towards single shot time-resolved microscopy using short wavelength table-top light sources. Struct. Dyn. 6, 010902 (2019).

    Article  CAS  Google Scholar 

  163. Helk, T. et al. Table-top extreme ultraviolet second harmonic generation. Sci. Adv. 7, eabe2265 (2021).

    Article  CAS  Google Scholar 

  164. Shi, X. et al. Attosecond light science and its application for probing quantum materials. J. Phys. B 53, 184008 (2020).

    Article  CAS  Google Scholar 

  165. Buades, B. et al. Attosecond state-resolved carrier motion in quantum materials probed by soft X-ray XANES. Appl. Phys. Rev. 8, 011408 (2021).

    Article  CAS  Google Scholar 

  166. Liu, H., Klein, I. M., Michelsen, J. M. & Cushing, S. K. Element-specific electronic and structural dynamics using transient XUV and soft X-ray spectroscopy. Chem 7, 2569–2584 (2021).

    Article  CAS  Google Scholar 

  167. Ramasesha, K., Leone, S. R. & Neumark, D. M. Real-time probing of electron dynamics using attosecond time-resolved spectroscopy. Annu. Rev. Phys. Chem. 67, 41–63 (2016).

    Article  CAS  Google Scholar 

  168. Duncan, C. J. R. et al. Multi-scale time-resolved electron diffraction enabled by high repetition rate, high dynamic range direct electron detection. Preprint at https://doi.org/10.48550/arXiv.2206.08404 (2022).

  169. Yu, Y. et al. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature 575, 156–163 (2019).

    Article  CAS  Google Scholar 

  170. Bie, Y.-Q., Zong, A., Wang, X., Jarillo-Herrero, P. & Gedik, N. A versatile sample fabrication method for ultrafast electron diffraction. Ultramicroscopy 230, 113389 (2021).

    Article  CAS  Google Scholar 

  171. Lu, D. et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).

    Article  CAS  Google Scholar 

  172. Hong, S. S. et al. Two-dimensional limit of crystalline order in perovskite membrane films. Sci. Adv. 3, eaao5173 (2017).

    Article  Google Scholar 

  173. Ji, D. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019).

    Article  CAS  Google Scholar 

  174. Paskiewicz, D. M., Sichel-Tissot, R., Karapetrova, E., Stan, L. & Fong, D. D. Single-crystalline SrRuO3 nanomembranes: a platform for flexible oxide electronics. Nano Lett. 16, 534–542 (2016).

    Article  CAS  Google Scholar 

  175. Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).

    Article  CAS  Google Scholar 

  176. Bakaul, S. R. et al. Single crystal functional oxides on silicon. Nat. Commun. 7, 10547 (2016).

    Article  CAS  Google Scholar 

  177. Legros, A. et al. Universal T-linear resistivity and Planckian dissipation in overdoped cuprates. Nat. Phys. 15, 142–147 (2019).

    Article  CAS  Google Scholar 

  178. Bruin, J. A. N., Sakai, H., Perry, R. S. & Mackenzie, A. P. Similarity of scattering rates in metals showing T-linear resistivity. Science 339, 804–807 (2013).

    Article  CAS  Google Scholar 

  179. Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020).

    Article  CAS  Google Scholar 

  180. Lin, Z. et al. Dramatic plasmon response to the charge-density-wave gap development in 1T-TiSe2. Phys. Rev. Lett. 129, 187601 (2022).

    Article  CAS  Google Scholar 

  181. Fujimori, A. The chicken and egg question in excitonic insulators. Journal Club for Condensed Matter Physics https://doi.org/10.36471/JCCM_August_2020_01 (2020).

  182. Kong, X.-S., Liang, H., Wu, X.-Y. & Peng, L.-Y. Symmetry analyses of high-order harmonic generation in monolayer hexagonal boron nitride. J. Phys. B 54, 124004 (2021).

    Article  CAS  Google Scholar 

  183. Kong, X.-S. et al. Manipulation of the high-order harmonic generation in monolayer hexagonal boron nitride by two-color laser field. J. Chem. Phys. 156, 074701 (2022).

    Article  CAS  Google Scholar 

  184. Spies, J. A. et al. Collaboration between experiment and theory in solar fuels research. Chem. Soc. Rev. 48, 1865–1873 (2019).

    Article  CAS  Google Scholar 

  185. Husremović, S. et al. Hard ferromagnetism down to the thinnest limit of iron-intercalated tantalum disulfide. J. Am. Chem. Soc. 144, 12167–12176 (2022).

    Article  Google Scholar 

  186. Ahn, Y. et al. Photoinduced domain pattern transformation in ferroelectric–dielectric superlattices. Phys. Rev. Lett. 119, 057601 (2017).

    Article  Google Scholar 

  187. Stoica, V. A. et al. Optical creation of a supercrystal with three-dimensional nanoscale periodicity. Nat. Mater. 18, 377–383 (2019).

    Article  CAS  Google Scholar 

  188. Lee, H. J. et al. Structural evidence for ultrafast polarization rotation in ferroelectric/dielectric superlattice nanodomains. Phys. Rev. X 11, 031031 (2021).

    CAS  Google Scholar 

  189. Li, Q. et al. Subterahertz collective dynamics of polar vortices. Nature 592, 376–380 (2021).

    Article  CAS  Google Scholar 

  190. Yu, Y. et al. Tunable angle-dependent electrochemistry at twisted bilayer graphene with moiré flat bands. Nat. Chem. 14, 267–273 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for input by Graham Fleming, Craig Schwartz, Anshul Kogar, Hanzhe Liu and Matteo Mitrano. A.Z. acknowledges support from the Miller Institute for Basic Research in Science. B.R.N. acknowledges funding by the National Science Foundation Graduate Research Fellowship Programme. S.-C.L. acknowledges support by the Berkeley–Taiwan Fellowship. J.A.S. acknowledges support by the Arnold O. Beckman Postdoctoral Fellowship Programme. M.Z. acknowledges funding by the W. M. Keck Foundation, funding from the Hellman Fellows Fund, funding from the UC Office of the President within the Multicampus Research Programmes and Initiatives (M21PL3263) and funding from Laboratory Directed Research and Development Programme at Berkeley Lab (107573 and 108232).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to literature review, manuscript writing, figure composition and article integration. A.Z. and M.Z. conceived the topical focus of this review. M.Z. supervised the project.

Corresponding author

Correspondence to Michael Zuerch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Shambhu Ghimire, Dragan Mihailović and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, A., Nebgen, B.R., Lin, SC. et al. Emerging ultrafast techniques for studying quantum materials. Nat Rev Mater 8, 224–240 (2023). https://doi.org/10.1038/s41578-022-00530-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00530-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing