Materials science articles within Nature Chemistry

Featured

  • In Your Element |

    Fiona C. Meldrum and Helmut Cölfen chalk up some of the myriad forms and uses of calcium carbonate to burnish a ‘dull’ reputation.

    • Fiona C. Meldrum
    •  & Helmut Cölfen
  • Thesis |

    Michelle Francl explores how glass revolutionized chemistry.

    • Michelle Francl
  • News & Views |

    Frank–Kasper phases are topologically close-packed structures typically found in ordered mixtures of ‘hard particles’ such as metallic alloys. Now, a shape amphiphile has been shown to self-assemble into a Frank–Kasper Z phase, which had so far remained elusive in soft materials.

    • Abhiram Reddy
    •  & Gregory M. Grason
  • News & Views |

    Precipitation processes enable the fast preparation of a variety of inorganic materials, although typically with little control over their morphology. Now, their one-, two- or three-dimensional growth has been promoted simply by tuning the electrolytic dissociation of the reactants and the supersaturation of the solution.

    • Mihui Park
    • , Gi-Hyeok Lee
    •  & Yong-Mook Kang
  • News & Views |

    Sodium chloride phases with unconventional non-1:1 stoichiometries are known to exist under high-pressure conditions. Now, Na2Cl and Na3Cl two-dimensional crystals have been obtained under ambient conditions, on graphene surfaces, from dilute solutions.

    • Artem R. Oganov
  • News & Views |

    Non-covalent interactions can organize planar molecules into two-dimensional arrays. It has now been shown that such arrays can be combined at the solid–liquid interface into bilayered heterostructures.

    • Manfred Buck
  • News & Views |

    DNA double helical structures are supramolecular assemblies that are typically held together by classical Watson–Crick pairing. Now, nucleotide chelation of silver ions supports an extended silver–DNA hybrid duplex featuring an uninterrupted silver array.

    • Pascal Auffinger
    •  & Eric Ennifar
  • News & Views |

    Gluing materials together underwater is a mighty challenge faced — and overcome — by mussels. It requires good adhesion and cohesion. Molecular-level mechanical measurements have now shown that cation–π interactions provide surprisingly strong cohesive abilities.

    • Henrik Birkedal
  • News & Views |

    Molecular daisy-chain structures are typically made up of two interlocked components and can exhibit muscle-like contraction and extension in one dimension. Zinc-based multicomponent systems that can operate in two and three dimensions have now been designed and synthesized.

    • Karine Fournel-Marotte
    •  & Frédéric Coutrot
  • News & Views |

    The design and prediction of network topology is challenging, even when the components' principle interactions are strong. Now, frameworks with relatively weak 'chiral recognition' between organic building blocks have been synthesized and rationalized in silico — an important development in the reticular synthesis of molecular crystals.

    • Caroline Mellot-Draznieks
    •  & Anthony K. Cheetham
  • News & Views |

    The calcination of metal–organic framework (MOF) precursors is promising for the preparation of nanoscale carbon materials, but the resulting morphologies have remained limited. Now, controlling the growth of precursor MOFs has enabled 1D carbon nanorods to be fabricated — these can then be readily unravelled into 2D graphene nanoribbons.

    • Jing Tang
    •  & Yusuke Yamauchi
  • In Your Element |

    Lars Öhrström relates the various roles played by rhodium in our daily lives, ranging from car components to drugs.

    • Lars Öhrström
  • News & Views |

    Molecules can transfer charge between electron donors and acceptors, and can also transport charge when connected between metallic electrodes. These processes are assumed to show generally similar trends, however, a significant departure from this has now been observed in a series of biphenyl bridges.

    • Gemma C. Solomon
  • Editorial |

    The field of molecular electronics has developed significantly as experimental techniques to study charge transport through single molecules have become more reliable. Three Articles in this issue highlight how chemists can now better understand and control electronic properties at the molecular level.

  • News & Views |

    Nanoscopic templates functionalized with light-reactive chromophores could ultimately be used to store solar energy and later release it as heat. Now, it has been shown that packing the chromophores together increases both storage capacity and lifetime.

    • Nathan R. Neale
  • Article |

    Recharging Li–O2 batteries requires oxidation of the discharge product solid Li2O2. Now a redox-mediating molecule is shown to assist this process by transferring electron–holes between solid Li2O2 and the positive electrode in a non-aqueous Li–O2 cell. This allows the cell to be charged at rates that are otherwise impossible.

    • Yuhui Chen
    • , Stefan A. Freunberger
    •  & Peter G. Bruce
  • News & Views |

    Four-dimensional electron microscopy has been applied to the detailed characterization of metal–organic-framework nanoparticles undergoing an electronic transition. The transition characteristics of a single particle were found to differ from those of an ensemble, and also to vary from one nanoparticle to the next.

    • Nigel D. Browning
  • Article |

    Introducing a small aperture in a 4D electron microscope has enabled researchers to visualize the phase transition of a single metal–organic framework particle with excellent spatio-temporal resolution. The spin-crossover dynamics of one nanoparticle are found to be distinct from those observed for an ensemble of heterogeneous nanoparticles.

    • Renske M. van der Veen
    • , Oh-Hoon Kwon
    •  & Ahmed H. Zewail
  • News & Views |

    Tying molecules together in a link results in tremendous stabilization of the radical species they can form. Six clearly distinguishable charged states — which can be interconverted reversibly — have now been observed in a densely cationic system.

    • David B. Amabilino
  • Article |

    A {U12Mn6} wheel-shaped cluster that has been assembled through cation–cation interactions exhibits single-molecule-magnet behaviour. Single-molecule magnets are promising for magnetic storage devices at the nanoscale, and the observation of magnetic bistability with an open hysteresis loop and high relaxation barrier in this 5f–3d complex suggests that uranium-based compounds could be useful components.

    • Victor Mougel
    • , Lucile Chatelain
    •  & Marinella Mazzanti
  • Article |

    Templated atomic layer deposition (ALD) is used to create oxide ‘nanocavities’ on the surface of catalyst particles. Subnanometre-nm films containing nanocavities act as sieves for the underlying catalyst, resulting in high selectivities for the smaller of two reactants in competitive oxidations or reductions.

    • Christian P. Canlas
    • , Junling Lu
    •  & Justin M. Notestein
  • Article |

    Efficient hydrogen-evolving catalysts comprising readily available elements are needed if hydrogen is to be adopted as a clean alternative to fossil fuels. Now, a diimine–dioxime cobalt complex has been covalently attached to a carbon nanotube electrode to yield an active and robust electrocatalyst for hydrogen generation (55,000 turnovers in seven hours) from aqueous solutions.

    • Eugen S. Andreiadis
    • , Pierre-André Jacques
    •  & Vincent Artero
  • Article |

    Heterogeneous catalysts are generally more readily recycled than homogeneous catalysts, but the latter are more easily modified to tune reactivity and selectivity. Here, the dendrimer coating of gold nanoparticle catalysts is shown to be a surrogate for the ligands of homogeneous catalysts. Tuning of product distribution and reaction selectivity is possible when these catalysts are employed in a fixed-bed flow reactor.

    • Elad Gross
    • , Jack Hung-Chang Liu
    •  & Gabor A. Somorjai
  • Article |

    Porous solids are well suited to the capture of environmentally harmful gases, but further understanding of the solid–gas interactions involved is required. Combining dynamic and static characterization with modelling, researchers have now described how a metal–organic framework binds CO2 and SO2 selectively through hydroxyl groups — rather than amine ones as typically featured.

    • Sihai Yang
    • , Junliang Sun
    •  & Martin Schröder
  • Perspective |

    Although the molecular formula gives valuable information on the properties of isolated molecules or conjugated polymers, it fails to accurately predict their collective behaviour in the solid state. This Perspective highlights the importance of organization across multiple length scales on the optical and electronic properties of organic semiconductors, and how device performances poorly reflect the capabilities of a given material.

    • Zachary B. Henson
    • , Klaus Müllen
    •  & Guillermo C. Bazan
  • Article |

    Understanding the nature of complex zeolite particles, used as catalysts in industrial reactors, is vital for their further development. Now, an integrated approach to visualizing granules of a hierarchical MFI-type zeolite, on length scales from nanometres to millimetres, is reported.

    • Sharon Mitchell
    • , Nina-Luisa Michels
    •  & Javier Pérez-Ramírez
  • News & Views |

    To improve the efficiency of molecular motors, a better understanding of the dynamics of their functional motions is required. Now, ultrafast fluorescence spectroscopy has been used to monitor the excited-state evolution of a light-driven molecular motor.

    • R. J. Dwayne Miller
  • News & Views |

    Metamaterials are synthetic materials tailored with unusual properties that are not found in nature. It has now been predicted that they could be engineered with negative refractive index through the use of periodic structures via bottom-up self-assembly synthesis.

    • Jackie Y. Ying
  • News & Views |

    Valuable insight into the use of lasers to control electron dynamics can be gained by simulations, but these are often limited by the uncertainty in the model systems used. Now, accurate calculations of controlled electron motion in benzene improve on this, while showing that its aromaticity could potentially be 'switched off'.

    • Katharine Moore
    •  & Herschel Rabitz
  • In Your Element |

    Beginning with its origins as the archetypal and eponymously elusive rare-earth element, Dante Gatteschi explains why dysprosium and other lanthanides have cornered the market in molecular magnetism.

    • Dante Gatteschi
  • Article |

    Insight into the active zeolitic domains of catalyst particles used in fluid catalytic cracking is limited by the particles' complex nature, but is crucial to improving these billion dollar catalysts. Now, a staining method allows confocal fluorescence microscopy to probe within single catalyst particles, and correlate Brønsted acidity distributions to catalytic activity.

    • Inge L. C. Buurmans
    • , Javier Ruiz-Martínez
    •  & Bert M. Weckhuysen
  • News & Views |

    Characterizing electrochemical behaviour on the nanometre scale is fundamental to gaining complete insight into the working mechanisms of fuel cells. The application of a new scanning probe microscopy technique can now relate local surface structure to electrochemical activity at a resolution below 10 nm.

    • Johannes A. A. W. Elemans
  • In Your Element |

    Although it is mainly known for its toxicity, beryllium possesses an array of properties that makes it attractive for a variety of non-industrial purposes. Ralph Puchta discusses why it is not always best avoided.

    • Ralph Puchta
  • Article |

    It is shown that long-lived reactive oxygen intermediates are formed in heterogeneous reactions of ozone with aerosol particles, resolving apparent discrepancies between earlier quantum mechanical calculations and kinetic experiments. These intermediates play a key role in the chemical transformations and adverse health effects of toxic and allergenic air particulates.

    • Manabu Shiraiwa
    • , Yulia Sosedova
    •  & Ulrich Pöschl
  • Article |

    Dye-sensitized solar cells combining electrolytes based on the ferrocene/ferrocenium redox couple with a metal-free organic donor–acceptor sensitizer are reported to achieve a record 7.5% energy conversion efficiency, revealing the great potential of ferrocene-based electrolytes for future dye-sensitized solar cell applications.

    • Torben Daeneke
    • , Tae-Hyuk Kwon
    •  & Leone Spiccia
  • News & Views |

    The mutual and specific recognition that can be exhibited between 'host' and 'guest' molecules occurs over very small length scales, but this phenomenon has now been demonstrated using macroscopic gels that self-assemble before your eyes.

    • Jonathan W. Steed
  • Research Highlights |

    The complex pore structures of mesoporous crystals can be elucidated by assessing the curvature of their boundary surface.

    • Neil Withers
  • Perspective |

    When it comes to porosity, the materials that spring to mind are typically one-, two- or three-dimensional extended networks. In this Perspective, discrete organic molecules are discussed that form porous solids — either owing to hollow molecular structures or simply through inefficient packing — with different properties from those of extended networks.

    • James R. Holst
    • , Abbie Trewin
    •  & Andrew I. Cooper
  • Article |

    Supramolecular gels based on small-molecule gelators have been shown to be effective media for the growth of organic crystals, including pharmaceutical compounds. Moreover, the gel-to-sol transition can be triggered by molecular recognition with anions, thereby enabling facile recovery of the crystals.

    • Jonathan A. Foster
    • , Marc-Oliver M. Piepenbrock
    •  & Jonathan W. Steed
  • Research Highlights |

    A tiny claw that opens and closes in response to two different enzymes has been fabricated and used to perform a biopsy on a model liver.

    • Stephen Davey
  • Article |

    The phosphoric acid fuel cell is limited by its slow rate of oxygen reduction at the cathode, but now an approach to the rational design of improved catalysts for this process has been developed. Molecular patterning of platinum surfaces with cyanide adsorbates is used to block the adsorption of spectator anions without hindering oxygen reduction, thus improving catalytic activity.

    • Dusan Strmcnik
    • , María Escudero-Escribano
    •  & Nenad M. Marković