Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Uranium and manganese assembled in a wheel-shaped nanoscale single-molecule magnet with high spin-reversal barrier

Abstract

Discrete molecular compounds that exhibit both magnetization hysteresis and slow magnetic relaxation below a characteristic ‘blocking’ temperature are known as single-molecule magnets. These are promising for applications including memory devices and quantum computing, but require higher spin-inversion barriers and hysteresis temperatures than currently achieved. After twenty years of research confined to the d- block transition metals, scientists are moving to the f-block to generate these properties. We have now prepared, by cation-promoted self-assembly, a large 5f–3d U12Mn6 cluster that adopts a wheel topology and exhibits single-molecule magnet behaviour. This uranium-based molecular wheel shows an open magnetic hysteresis loop at low temperature, with a non-zero coercive field (below 4 K) and quantum tunnelling steps (below 2.5 K), which suggests that uranium might indeed provide a route to magnetic storage devices. This molecule also represents an interesting model for actinide nanoparticles occurring in the environment and in spent fuel separation cycles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reaction scheme.
Figure 2: Solid-state structure of {[UO2(salen)]4Ca2} (1) and [{[UO2(salen)]2Mn(Py)3}6] (2).
Figure 3: Temperature dependence of the molar d.c. magnetic susceptibility χM(T) of complex 2.
Figure 4: Low-temperature magnetic hysteresis loops showing an open cycle.
Figure 5: Dynamic magnetic data and magnetization relaxation time data for compound 2.

Similar content being viewed by others

References

  1. Wernsdorfer, W., Aliaga-Alcalde, N., Hendrickson, D. N. & Christou, G. Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets. Nature 416, 406–409 (2002).

    Article  PubMed  Google Scholar 

  2. Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets (Oxford Univ. Press, 2006).

  3. Affronte, M. et al. Linking rings through diamines and clusters: exploring synthetic methods for making magnetic quantum gates. Angew. Chem. Int. Ed. 44, 6496–6500 (2005).

    Article  CAS  Google Scholar 

  4. Milios, C. et al. A record anisotropy barrier for a single-molecule magnet. J. Am. Chem. Soc. 129, 2754–2755 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nature Mater. 7, 179–186 (2008).

    Article  CAS  Google Scholar 

  6. Ako, A. et al. A ferromagnetically coupled Mn-19 aggregate with a record S = 83/2 ground spin state. Angew. Chem. Int. Ed. 45, 4926–4929 (2006).

    Article  CAS  Google Scholar 

  7. Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S. & Kaizu, Y. Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 125, 8694–8695 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Rinehart, J. D., Fang, M., Evans, W. J. & Long, J. R. Strong exchange and magnetic blocking in (N2)3–-radical-bridged lanthanide complexes. Nature Chem. 3, 538–542 (2011).

    Article  CAS  Google Scholar 

  9. Blagg, R. J., Tuna, F., McInnes, E. J. L. & Winpenny, R. E. P. Pentametallic lanthanide-alkoxide square-based pyramids: high energy barrier for thermal relaxation in a holmium single molecule magnet. Chem. Commun. 47, 10587–10589 (2011).

    Article  CAS  Google Scholar 

  10. Blagg, R. J., Muryn, C. A., McInnes, E. J. L., Tuna, F. & Winpenny, R. E. P. Single pyramid magnets: Dy5 pyramids with slow magnetic relaxation to 40 K. Angew. Chem. Int. Ed. 50, 6530–6533 (2011).

    Article  CAS  Google Scholar 

  11. Rinehart, J. D., Fang, M., Evans, W. J. & Long, J. R. A (N2)3–-radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K. J. Am. Chem. Soc. 133, 14236–14239 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Rinehart, J. D., Meihaus, K. R. & Long, J. R. Observation of a secondary slow relaxation process for the field-induced single-molecule magnet U(H2BPz2)3 . J. Am. Chem. Soc. 132, 7572–7573 (2010).

    Article  CAS  Google Scholar 

  13. Antunes, M. A. et al. [U(Tp(Me2))2(bipy)]+: a cationic uranium(III) complex with single-molecule-magnet behavior. Inorg. Chem. 50, 9915–9917 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Magnani, N. et al. Magnetic memory effect in a transuranic mononuclear complex. Angew. Chem. Int. Ed. 50, 1696–1698 (2011).

    Article  CAS  Google Scholar 

  15. Mills, D. et al. A delocalized arene-bridged diuranium single-molecule magnet. Nature Chem. 3, 454–460 (2011).

    Article  CAS  Google Scholar 

  16. Mazzanti, M. Uranium memory. Nature Chem. 3, 426–427 (2011).

    Article  CAS  Google Scholar 

  17. Magnani, N. Superexchange coupling and slow magnetic relaxation in a transuranium polymetallic complex. Phys. Rev. Lett. 104, 197202 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Lam, O. P., Heinemann, F. W. & Meyer, K. Activation of elemental S, Se and Te with uranium(III): bridging U–E–U (E = S, Se) and diamond-core complexes U–(E)2–U (E=O, S, Se, Te). Chem. Sci. 2, 1538–1547 (2011).

    Article  CAS  Google Scholar 

  19. Spencer, L. P. et al. M. Cation–cation interactions, magnetic communication, and reactivity of the pentavalent uranium ion [U(NtBu)2]+. Angew. Chem. Int. Ed. 48, 3795–3798 (2009).

    Article  CAS  Google Scholar 

  20. Kozimor, S. A., Bartlett, B. M., Rinehart, J. D. & Long, J. R. Magnetic exchange coupling in chloride-bridged 5f–3d heterometallic complexes generated via insertion into a uranium(IV) dimethylpyrazolate dimer. J. Am. Chem. Soc. 129, 10672–10673 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Nocton, G., Horeglad, P., Pecaut, J. & Mazzanti, M. Polynuclear cation–cation complexes of pentavalent uranyl: relating stability and magnetic properties to structure. J. Am. Chem. Soc. 130, 16633–16645 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Chatelain, L., Mougel, V., Pecaut, J. & Mazzanti, M. Chem. Sci. 3, 1075–1079 (2012).

    Article  CAS  Google Scholar 

  23. Mougel, V., Horeglad, P., Nocton, G., Pecaut, J. & Mazzanti, M. Stable pentavalent uranyl species and selective assembly of a polymetallic mixed-valent uranyl complex by cation–cation interactions. Angew. Chem. Int. Ed. 48, 8477–8480 (2009).

    Article  CAS  Google Scholar 

  24. Rosen, R. K., Andersen, R. A. & Edelstein, N. M. [MeC5H4)3U]2 [µ-1,4-N2C6H4]—a bimetallic molecule with antiferromagnetic coupling between the uranium centers. J. Am. Chem. Soc. 112, 4588–4590 (1990).

    Article  CAS  Google Scholar 

  25. Kiplinger, J. L. et al. Actinide-mediated cyclization of 1,2,4,5-tetracyanobenzene: synthesis and characterization of self-assembled trinuclear thorium and uranium macrocycles. Angew. Chem. Int. Ed. 45, 2036–2041 (2006).

    Article  CAS  Google Scholar 

  26. Sigmon, G. E. & Burns, P. C. Rapid self-assembly of uranyl polyhedra into crown clusters. J. Am. Chem. Soc. 133, 9137–9139 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Evans, W. J., Kozimor, S. A. & Ziller, J. W. Molecular octa-uranium rings with alternating nitride and azide bridges. Science 309, 1835–1838 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Nocton, G., Pecaut, J. & Mazzanti, M. A nitrido-centered uranium azido cluster obtained from a uranium azide. Angew. Chem. Int. Ed. 47, 3040–3042 (2008).

    Article  CAS  Google Scholar 

  29. Biswas, B., Mougel, V., Pecaut, J. & Mazzanti, M. Base-driven assembly of large uranium oxo/hydroxo clusters. Angew. Chem. Int. Ed. 50, 5744–5747 (2011).

    Google Scholar 

  30. Le Borgne, T., Riviere, E., Marrot, J., Girerd, J. J. & Ephritikhine, M. Synthesis, crystal structure, and magnetic behavior of linear M2(II)–U(IV) complexes (M=Co, Ni, Cu, Zn). Angew. Chem. Int. Ed. 39, 1647–1649 (2000).

    Article  CAS  Google Scholar 

  31. Arnold, P. L., Patel, D., Wilson, C. & Love, J. B. Reduction and selective oxo group silylation of the uranyl dication. Nature 451, 315–318 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Monreal, M. J., Carver, C. T. & Diaconescu, P. L. Redox processes in a uranium bis(1,1′-diamidoferrocene) complex. Inorg. Chem. 46, 7226–7228 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Krot, N. N. & Grigoriev, M. S. Cation–cation interaction in crystalline actinide compounds. Russ. Chem. Rev. 73, 89–100 (2004).

    Article  CAS  Google Scholar 

  34. Arnold, P. et al. Single-electron uranyl reduction by a rare-earth cation. Angew. Chem. Int. Ed. 50, 887–890 (2011).

    Article  CAS  Google Scholar 

  35. Mougel, V., Horeglad, P., Nocton, G., Pecaut, J. & Mazzanti, M. Cation–cation complexes of pentavalent uranyl: from disproportionation intermediates to stable clusters. Chem. Eur. J. 16, 14365–14377 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Mougel, V., Biswas, B., Pecaut, J. & Mazzanti, M. New insights into the acid mediated disproportionation of pentavalent uranyl. Chem. Commun. 46, 8648–8650 (2010).

    Article  CAS  Google Scholar 

  37. Arnold, P. L. et al. Strongly coupled binuclear uranium–oxo complexes from uranyl oxo rearrangement and reductive silylation. Nature Chem. 4, 221–222 (2012).

    Article  CAS  Google Scholar 

  38. Milios, C. J. et al. Toward a magnetostructural correlation for a family of Mn6 SMMs. J. Am. Chem. Soc. 129, 12505–12511 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Arnold, P. L., Patel, D., Blake, A. J., Wilson, C. & Love, J. B. Selective oxo functionalisation of the uranyl ion with 3d metal cations. J. Am. Chem. Soc. 128, 9610–9611 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Boskovic, C. et al. Single-molecule magnets: novel Mn8 and Mn9 carboxylate clusters containing an unusual pentadentate ligand derived from pyridine-2,6-dimethanol. Inorg. Chem. 41, 5107–5118 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Nocton, G. et al. Synthesis, structure, and bonding of stable complexes of pentavalent uranyl. J. Am. Chem. Soc. 132, 495–508 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Arnold, P. L. et al. Uranyl oxo activation and functionalization by metal cation coordination. Nature Chem. 2, 1056–1061 (2010).

    Article  CAS  Google Scholar 

  43. Gatteschi, D. Molecular magnetism—a basis for new materials. Adv. Mater. 6, 635–645 (1994).

    Article  CAS  Google Scholar 

  44. Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. Magnetic bistability in a metal-ion cluster. Nature 365, 141–143 (1993).

    Article  CAS  Google Scholar 

  45. Sessoli, R. et al. High-spin molecules—[Mn12O12(O2Cr)16(H2O)4]. J. Am. Chem. Soc. 115, 1804–1816 (1993).

    Article  CAS  Google Scholar 

  46. Thomas, L. et al. Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 383, 145–147 (1996).

    Article  CAS  Google Scholar 

  47. Gatteschi, D. & Sessoli, R. Quantum tunneling of magnetization and related phenomena in molecular materials. Angew. Chem. Int. Ed. 42, 268–297 (2003).

    Article  CAS  Google Scholar 

  48. Stamatatos, T. C. et al. 'Switching on' the properties of single-molecule magnetism in triangular manganese(III) complexes. J. Am. Chem. Soc. 129, 9484–9499 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Stamatatos, T. C., Teat, S. J., Wernsdorfer, W. & Christou, G. Enhancing the quantum properties of manganese-lanthanide single-molecule magnets: observation of quantum tunneling steps in the hysteresis loops of a {Mn12Gd} cluster. Angew. Chem. Int. Ed. 48, 521–524 (2009).

    Article  CAS  Google Scholar 

  50. Rinck, J. et al. An octanuclear [Cr4(III)Dy4(III)] 3d–4f single-molecule magnet. Angew. Chem. Int. Ed. 49, 7583–7587 (2010).

    Article  CAS  Google Scholar 

  51. Papatriantafyllopoulou, C., Wernsdorfer, W., Abboud, K. A. & Christou, G. Mn21Dy cluster with a record magnetization reversal barrier for a mixed 3d/4f single-molecule magnet. Inorg. Chem. 50, 421–423 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Commissariat à l'Energie Atomique, Direction de l'Energie Nucléaire, RBPCH programme and by the ‘Agence Nationale de la Recherche’, (ANR-10-BLAN-0729). The authors also thank F. Jacquot and L. Dubois for support and suggestions regarding the magnetic measurements, A. De Geyer for recording the PXRD diffractogram, N. Magnani, P. Santini and S. Carretta for useful discussions on the interpretation of the magnetic data.

Author information

Authors and Affiliations

Authors

Contributions

V.M. carried out the synthesis experiments, measured the d.c. magnetic data and analysed the experimental data. L.C. performed the preliminary experiments. R.C., E.C. and J.C.G. collected and analysed the magnetic measurement data and created the magnetic model. J.P. and V.M. carried out X-ray single-crystal structure analyses. M.M. originated the central idea, coordinated the work and analysed the experimental data. M.M., V.M. and R.C. wrote the manuscript.

Corresponding author

Correspondence to Marinella Mazzanti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1796 kb)

Supplementary information

Crystallographic data for {[UO2(salen)]4Ca2}, complex 1 (CIF 26 kb)

Supplementary information

Crystallographic data for [{[UO2(salen)]2Mn(Py)3}6], complex 2 (CIF 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mougel, V., Chatelain, L., Pécaut, J. et al. Uranium and manganese assembled in a wheel-shaped nanoscale single-molecule magnet with high spin-reversal barrier. Nature Chem 4, 1011–1017 (2012). https://doi.org/10.1038/nchem.1494

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1494

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing