Biomaterials articles within Nature Chemistry

Featured

  • Article |

    The physicochemical driving forces of protein-free, RNA-driven phase transitions were previously unclear, but it is now shown that RNAs undergo entropically driven liquid–liquid phase separation upon heating in the presence of magnesium ions. In the condensed phase, RNAs can undergo an enthalpically favourable percolation transition that leads to arrested condensates.

    • Gable M. Wadsworth
    • , Walter J. Zahurancik
    •  & Priya R. Banerjee
  • Article |

    Bottom-up assembly of protocells into networking superstructures represents a further key step towards rudimentary formation of life. Now it has been shown that a pool of biomolecules can self-organize into an interactive binary population of protocell coacervates with a self-sorting chain-like configuration, allowing for biomolecular extraction, translocation and macroscale separation.

    • Wenjing Mu
    • , Liyan Jia
    •  & Yan Qiao
  • In Your Element |

    Fiona C. Meldrum and Helmut Cölfen chalk up some of the myriad forms and uses of calcium carbonate to burnish a ‘dull’ reputation.

    • Fiona C. Meldrum
    •  & Helmut Cölfen
  • News & Views |

    Complexity is a hallmark of biological systems, but scientific experiments are typically conducted in simplified conditions. Now, diverse polymers that mimic the local environments of complex biological mixtures have been shown to improve protein folding, stability and function.

    • Alana P. Gudinas
    •  & Danielle J. Mai
  • Article |

    Stereochemistry can affect the reactivity and transport properties of small molecules; however, it is unclear whether the stereochemistry of components in a lipid nanoparticle influences its activity in vivo. Now, it has been shown that lipid nanoparticles made with a stereopure component can increase delivery of mRNA. A biological mechanism driving the effect is also proposed.

    • Marine Z. C. Hatit
    • , Curtis N. Dobrowolski
    •  & James E. Dahlman
  • Article |

    Identifying and quantifying the biodistribution of synthetic polymeric nanoparticles in biological milieu is crucial for biomedical applications. Now, it has been shown that encoded polymeric amphiphiles with discrete molar masses undergo sequence- and length-dependent self-assembly into precise digital micelles that can be used in direct sequence reading and ex vivo label-free quantification assays.

    • Qiangqiang Shi
    • , Hao Yin
    •  & Shiyong Liu
  • Article |

    Creating hierarchical synthetic materials that can modulate microbial communities remains a great challenge due to the complex interactions between microbiota and their colonized environments. Now, a soil-inspired chemical system that responds to chemical, optical and mechanical stimuli has been developed. The soil-inspired chemical system can enhance microbial cultures and biofuel production, enrich gut bacterial diversity and alleviate ulcerative colitis symptoms.

    • Yiliang Lin
    • , Xiang Gao
    •  & Bozhi Tian
  • In Your Element |

    Choline 2-hexenoate is an ionic compound that is a liquid at room temperature, and is just one of a class of compounds that have huge potential in biomedical research and clinical applications, explains Eden E. L. Tanner.

    • Eden E. L. Tanner
  • Article
    | Open Access

    Cytoskeletons are essential components of cells that perform a variety of tasks, and artificial cytoskeletons that perform these functions are required for the bottom-up assembly of synthetic cells. Now, a multi-functional cytoskeleton mimic has been engineered from DNA, consisting of confined DNA filaments that are capable of reversible self-assembly and transport of gold nanoparticles and vesicular cargo.

    • Pengfei Zhan
    • , Kevin Jahnke
    •  & Kerstin Göpfrich
  • Article |

    Soft bioelectronic devices have exciting potential applications in robotics, computing and medicine, but they are typically restricted by the requirement for tethers or stiff electrodes. Now, a synthetic nerve has been developed that is bioinspired, wireless and powered by light. By patterning functionalized lipid membrane compartments, information was directionally conveyed using electrochemical signals.

    • Charlotte E. G. Hoskin
    • , Vanessa Restrepo Schild
    •  & Hagan Bayley
  • News & Views |

    Peptides are a class of versatile biomolecules that function as hormones, signalling messengers and drugs. Now, two papers report alternative approaches to tailor their chemical properties, which enables the transport of biomacromolecules into cells. These approaches could find use in a wide range of biomedical applications.

    • Yuan Ping
  • Article |

    Coacervate microdroplets formed from pH- and redox-responsive peptides and self-assembled by liquid–liquid phase separation have been shown to quickly recruit macromolecular therapeutics—such as peptides, large proteins and mRNAs—and directly enter the cytosol of cells via a non-endocytic pathway. The subsequent release of therapeutic cargo is mediated by endogenic glutathione.

    • Yue Sun
    • , Sze Yi Lau
    •  & Ali Miserez
  • Article |

    Water-walking insects harness capillary forces by changing body posture to climb or descend the meniscus between water and a solid object. Now, autonomous aqueous-based synthetic systems have been shown to overcome the meniscus barrier and shuttle cargo subsurface between a landing site and targeted drop-off sites.

    • Ganhua Xie
    • , Pei Li
    •  & Thomas P. Russell
  • Article |

    Nature uses out-of-equilibrium systems to control hierarchical assembly. Now, a dissipative chemical system has been shown to slowly release monomer DNA strands from a high-energy reservoir, regulating self-assembly by switching the mechanism of supramolecular polymerization at the single-molecule level. This process heals fibre defects, converting branched, heterogeneous networks into nanocable superstructures.

    • Felix J. Rizzuto
    • , Casey M. Platnich
    •  & Hanadi F. Sleiman
  • Article |

    Machine learning has now been shown to enable the de novo design of abiotic nuclear-targeting miniproteins. To achieve this, high-throughput experimentation was combined with a directed evolution-inspired deep-learning approach in which the molecular structures of natural and unnatural residues are represented as topological fingerprints. The designed miniproteins, called Mach proteins, are non-toxic and can efficiently deliver antisense cargo in mice.

    • Carly K. Schissel
    • , Somesh Mohapatra
    •  & Bradley L. Pentelute
  • Article |

    Although many systems that involve protocell–protocell interactions have been developed, there are fewer reports of protocell–environment interactive systems. Now, helical hydrogel filaments—in which enzyme-containing proteinosomes are immobilized—have been shown to contract and expand as the local chemical environment changes. Enzyme processing regulates the chemomechanical responses to generate different modes of actuation in the soft microstructures.

    • Ning Gao
    • , Mei Li
    •  & Stephen Mann
  • Article |

    Stimuli-responsive control of drug activation can mitigate issues caused by poor drug selectivity. Now, it has been shown that mechanical force—induced by ultrasound—can be used to activate drugs in three different systems. This approach has enabled the activation of antibiotics or a cytotoxic anticancer agent from synthetic polymers, polyaptamers and nanoparticle assemblies.

    • Shuaidong Huo
    • , Pengkun Zhao
    •  & Andreas Herrmann
  • Article |

    The self-assembly of haemoglobin-containing erythrocyte membrane fragments onto the surface of preformed coacervates has been used to make hybrid synthetic cells that can initiate nitric-oxide-induced vasodilation. These synthetic cells encapsulate enzymes that generate a flux of nitric oxide, as well as exhibiting high haemocompatibility and increased blood circulation times.

    • Songyang Liu
    • , Yanwen Zhang
    •  & Stephen Mann
  • Article |

    A chemoenzymatic method to site-specifically conjugate peptide and protein thioesters to folded proteins at lysine residues has been developed. The method uses a genetically encoded four-residue tag that is recognized by the E2 SUMO-conjugating enzyme Ubc9. This approach enables isopeptide formation with just Ubc9 in a programmable manner and obviates the need for E1 and E3 enzymes.

    • Raphael Hofmann
    • , Gaku Akimoto
    •  & Jeffrey W. Bode
  • Article |

    A six-helix bundle DNA structure called meta-DNA has now been assembled and shown to possess some structural properties similar to those of single-stranded DNA. Two meta-DNAs containing complementary ‘meta-base pairs’ are shown to form double helices. Meta-DNA building blocks are also used to construct a series of DNA architectures and to perform a hierarchical strand-displacement reaction.

    • Guangbao Yao
    • , Fei Zhang
    •  & Hao Yan
  • Article |

    A programmable polymer library that responds to external and internal stimuli has been developed and used to fabricate a series of nanocarriers for drug release. The carriers respond to disease biomarkers, triggering self-immolative motifs and leading to the site-specific release of therapeutics both in vitro and in vivo.

    • Penghui Zhang
    • , Di Gao
    •  & Weihong Tan
  • News & Views |

    Monoclonal antibodies have shown tremendous success in cancer treatment; however, humanization for clinical applications is expensive and not straightforward. Now, molecularly imprinted polymer nanogels have been developed that can block cell-surface proteins and disrupt tumour spheroids.

    • Alessandra Maria Bossi
  • News & Views |

    In biological systems, order typically emerges from out-of-equilibrium molecular processes that control both static patterns and dynamic changes. Now, the self-regulating assembly and disassembly of a synthetic system has been achieved on the micrometre scale, by coupling the growth of a DNA nanotube to a biochemical oscillator.

    • Tim Liedl
  • Article |

    Nucleic acid nanotechnology offers a promising route towards the design and synthesis of reconfigurable biomolecular materials. Now, the combination of dynamic and structural DNA nanotechnology has enabled the dynamic control of the assembly and disassembly of DNA nanotubes. The process involves minimal synthetic gene systems, including an autonomous molecular oscillator.

    • Leopold N. Green
    • , Hari K. K. Subramanian
    •  & Elisa Franco
  • Article |

    Symmetrical protein oligomers perform key structural and catalytic functions in nature, but engineering such oligomers synthetically is challenging. Now, oppositely supercharged synthetic variants of normally monomeric proteins have been shown to assemble via specific, introduced electrostatic contacts into symmetrical, highly well-defined oligomers.

    • Anna J. Simon
    • , Yi Zhou
    •  & Andrew D. Ellington
  • Article |

    The creation of a viable technology that enables precise control over the monomer sequence in synthetic polymers remains a significant challenge. High-purity sequence-defined polyethers with readily tailored side-chain functionalities have now been made through liquid-phase iterative synthesis combined with size-exclusion molecular sieving and real-time monitoring.

    • Ruijiao Dong
    • , Ruiyi Liu
    •  & Andrew G. Livingston
  • Article |

    The preparation of conjugates between proteins and small molecules is often challenging and requires several synthetic steps to functionalize each component for conjugation. Now, a conjugation methodology that leverages an electrophilic Se–S bond of selenocysteine to create bioconjugates between polypeptides and complex small molecules has been described.

    • Daniel T. Cohen
    • , Chi Zhang
    •  & Bradley L. Pentelute
  • Article |

    Organoclay/DNA semipermeable microcapsules with catalase-powered oxygen gas bubble-dependent buoyancy are prepared and exploited as synthetic protocells capable of programmed motility and sustained oscillatory movement.

    • B. V. V. S. Pavan Kumar
    • , Avinash J. Patil
    •  & Stephen Mann
  • Article |

    Biominerals feature unique and potentially useful three-dimensional structures but are often difficult to transform into functional materials. Now, a two-step ion exchange/insertion reaction has been shown to convert synthetic carbonate salts and calcium carbonate biominerals into lead halide perovskites with tunable optoelectronic properties while preserving the shapes and microstructures of the precursors.

    • Tim Holtus
    • , Lukas Helmbrecht
    •  & Willem L. Noorduin
  • Article |

    Living systems rely on externally tuneable and stimuli-responsive conformational changes of proteins and protein assemblies for a wide range of essential functions. A combination of experimental and computational analyses has now enabled the fabrication of a rationally designed, synthetic, stimuli-responsive protein assembly through modulation of its free-energy landscape.

    • Robert Alberstein
    • , Yuta Suzuki
    •  & F. Akif Tezcan
  • News & Views |

    Proteins are attractive material building blocks, yet their intrinsic functionality has remained largely untapped. Now, a protein-based material that exhibits controllable self-assembling behaviour has been prepared in a one-pot synthesis by simultaneous use of recombinant expression and post-translational modification.

    • Alvaro Mata
  • Article |

    Inspired by the post-translational modifications of polypeptides widespread in biological systems, the one-pot synthesis of biohybrid materials was engineered within Escherichia coli using a recombinant expression and post-translational lipidation. The fatty-acid-modified elastin-like polypeptides (FAMEs) prepared, which comprise peptide-amphiphile segments prone to self-assembly fused to a thermally responsive elastin-like polypeptide, exhibit temperature-triggered hierarchical assembly.

    • Davoud Mozhdehi
    • , Kelli M. Luginbuhl
    •  & Ashutosh Chilkoti
  • Article |

    Biomaterials that respond to precise combinations of environmental cues represent an important technology for tissue engineering and next-generation drug delivery systems. Now, a modular framework to programme material degradation following Boolean logic has been demonstrated by specifying the molecular architecture and connectivity of orthogonal stimuli-labile moieties within hydrogel cross-linkers.

    • Barry A. Badeau
    • , Michael P. Comerford
    •  & Cole A. DeForest
  • Article |

    A DNA-based reaction network has now been developed that creates a French flag pattern with immobile and sharp borders from a shallow initial concentration gradient. The output pattern can be used to control the macroscopic organization of DNA-decorated particles thereby inducing a French flag pattern of colloidal aggregation.

    • Anton S. Zadorin
    • , Yannick Rondelez
    •  & André Estevez-Torres
  • News & Views |

    Gluing materials together underwater is a mighty challenge faced — and overcome — by mussels. It requires good adhesion and cohesion. Molecular-level mechanical measurements have now shown that cation–π interactions provide surprisingly strong cohesive abilities.

    • Henrik Birkedal
  • Article |

    Di- and tripeptide building blocks in which the C-terminus has been converted into an aldehyde are shown to form dynamic chemical networks through imine condensation followed by the formation of cyclic N,N-acetals. The networks exhibit multi-phase growth of prion-like assemblies that template the formation of chain-length-specific peptide-like oligomers.

    • Chenrui Chen
    • , Junjun Tan
    •  & David G. Lynn
  • Article |

    Cation–π interactions are critical for the adhesion proteins of marine organisms, yet the energetics of cation–π interactions in underwater environments remains uncharted. Nanoscale force measurements and NMR spectroscopy reveal that interfacial confinement fundamentally alters the energetics of cation–π mediated assembly.

    • Matthew A. Gebbie
    • , Wei Wei
    •  & Jacob N. Israelachvili
  • Article |

    A programmable model of membraneless organelles comprised of intrinsically disordered proteins (IDPs) containing sequences of low complexity has now been developed. The rules governing the assembly of archetypal IDPs into biologically inspired mixed, layered and size-controlled configurations provides a new means for understanding intracellular phase behaviour of IDPs.

    • Joseph R. Simon
    • , Nick J. Carroll
    •  & Gabriel P. López
  • Review Article |

    Biological drugs can offer high potency and selectivity; however, this class of therapeutics often shows poor stability upon oral administration and during subsequent circulation. This Review highlights the materials and methods used to deliver biological drugs, and discusses how these approaches can improve their pharmacokinetics.

    • Alexander N. Zelikin
    • , Carsten Ehrhardt
    •  & Anne Marie Healy
  • Article |

    The encapsulation and stabilization of an oxygen tolerant [NiFe]-hydrogenase, sequestered within the bacteriophage P22 capsid, has now been achieved through a directed self-assembly process. Probing the catalytic activity and infrared spectroscopic signatures of the bio-inspired assembly shows that the capsid provides stability and protection to the hydrogenase cargo.

    • Paul C. Jordan
    • , Dustin P. Patterson
    •  & Trevor Douglas
  • News & Views |

    Synthetic oligomers could potentially expand beyond the functions offered by proteins and nucleic acids. However, this requires precise methods for controlling their folding and self-assembly. Now, it is shown that two drastically different supramolecular architectures can be fabricated from closely related sequences using a single biomimetic scaffold.

    • W. Seth Horne
  • Article |

    Amphiphilic-peptide-driven opening of elastin-like protein molecules triggers the self-assembly of a multilayered membrane. This dynamic system can undergo morphogenesis into hierarchically ordered tubular structures that can be used to create complex scaffolds for tissue engineering.

    • Karla E. Inostroza-Brito
    • , Estelle Collin
    •  & Alvaro Mata
  • News & Views |

    Nanocrystals with precisely defined structures offer promise as components of advanced materials yet they are challenging to create. Now, a nanocrystal made up of seven cadmium and twelve chloride ions has been synthesized via a biotemplating approach that uses a de novo designed protein.

    • Li Shang
    •  & Gerd Ulrich Nienhaus
  • Article |

    Lipid bilayers containing porphyin-phospholipid that is chelated with cobalt have been shown to capture his-tagged proteins and peptides. This method offers a simple route for functionalizing pre-formed lipid bilayers without disrupting their integrity. Using this approach homing peptides were attached to cargo-loaded liposomes to enable tumour targeting, and an HIV-derived protein fragment elicited antibodies following binding to immunogenic liposomes.

    • Shuai Shao
    • , Jumin Geng
    •  & Jonathan F. Lovell
  • Article |

    The extraction of (bio)molecules from fluid mixtures is vital for applications ranging from biomedical diagnostics to environmental analysis. Now a robust chemomechanical sorting system for the extraction of thrombin is described in which pH-dependent binding of the analyte to a specific aptamer is combined with volume changes of the pH-responsive hydrogel in a biphasic microfluidic regime, resulting in a catch-and-release system.

    • Ankita Shastri
    • , Lynn M. McGregor
    •  & Ximin He
  • Article |

    Directed evolution has emerged as a powerful tool for the identification of improved enzyme catalysts. Now, gel-shell beads are introduced as compartments that cage an enzyme with its encoding DNA, constituting a new genotype–phenotype linkage. Screening of 107 gel-shell beads by flow cytometry leads to an improved phosphotriesterase bioremediation catalyst.

    • Martin Fischlechner
    • , Yolanda Schaerli
    •  & Florian Hollfelder
  • News & Views |

    Protein-based protonic conductivity plays an important role in nature, but has been explored little outside of a biological setting. Now, proton conductors have been developed based on the squid protein reflectin, and integrated with devices for potential bioelectronic applications.

    • Marco Rolandi
  • Article |

    Proton-conducting materials have proved useful for renewable energy applications and bioelectronics technologies. The proton conductivity of thin films made from reflectin — a cephalopod structural protein — is now reported. Reflectin's electrical properties compare favourably to those of artificial materials, and have enabled the demonstration of protein-based protonic transistors.

    • David D. Ordinario
    • , Long Phan
    •  & Alon A. Gorodetsky