Materials chemistry articles within Nature Chemistry

Featured

  • In Your Element |

    Choline 2-hexenoate is an ionic compound that is a liquid at room temperature, and is just one of a class of compounds that have huge potential in biomedical research and clinical applications, explains Eden E. L. Tanner.

    • Eden E. L. Tanner
  • Article |

    The biochemical roles and mechanisms of multiphase membraneless organelles are not yet well understood. Now, multiphase peptide droplets have been shown to sort RNA based on whether it is single- or double-stranded, as well as impact RNA duplexation through in-droplet thermodynamic equilibria. This work provides insight into possible primitive mechanisms for multicompartment intracellular condensates and can aid in the design of functional artificial membraneless organelles.

    • Saehyun Choi
    • , McCauley O. Meyer
    •  & Christine D. Keating
  • Article
    | Open Access

    Cytoskeletons are essential components of cells that perform a variety of tasks, and artificial cytoskeletons that perform these functions are required for the bottom-up assembly of synthetic cells. Now, a multi-functional cytoskeleton mimic has been engineered from DNA, consisting of confined DNA filaments that are capable of reversible self-assembly and transport of gold nanoparticles and vesicular cargo.

    • Pengfei Zhan
    • , Kevin Jahnke
    •  & Kerstin Göpfrich
  • Article |

    The cost-effective use of platinum as a catalyst has led to an evolving set of systems ranging from nanoparticles to single atoms on a variety of solid supports. It has now been shown that the dissolution of platinum atoms in a liquid gallium matrix generates a liquid catalyst that functions at low temperature with high activity.

    • Md. Arifur Rahim
    • , Jianbo Tang
    •  & Kourosh Kalantar-Zadeh
  • News & Views |

    Understanding how surface structure affects catalyst selectivity is limited by the ability to synthesize atomically precise active-site ensembles. Now, by using intermetallic Pd–Zn, a series of well-defined multinuclear Pd–metal–Pd catalytic sites have been generated and studied, providing insights into their selectivity for the semi-hydrogenation of acetylene.

    • Max Mortensen
    •  & Siris Laursen
  • Article |

    2D–2D heterostructures are typically held together by van der Waals interactions. Now, an on-device MoS2–graphene heterostructure has been prepared that is covalently linked through a bifunctional molecule featuring a maleimide and a diazonium group. The electronic properties of the resulting heterostructure are shown to be dominated by the molecular interface.

    • Manuel Vázquez Sulleiro
    • , Aysegul Develioglu
    •  & Emilio M. Pérez
  • Article |

    Soft bioelectronic devices have exciting potential applications in robotics, computing and medicine, but they are typically restricted by the requirement for tethers or stiff electrodes. Now, a synthetic nerve has been developed that is bioinspired, wireless and powered by light. By patterning functionalized lipid membrane compartments, information was directionally conveyed using electrochemical signals.

    • Charlotte E. G. Hoskin
    • , Vanessa Restrepo Schild
    •  & Hagan Bayley
  • Article |

    Flexible metal–organic frameworks (MOFs) in which guest uptake and release occur above certain threshold pressures are attractive adsorbents. Now, the gated sorption behaviour of such a zinc-based mixed-ligand MOF has been tuned to match the narrow temperature and pressure range required for safe, efficient acetylene storage by adjusting the ratio of two different functional groups on its benzenedicarboxylate ligands.

    • Mickaele Bonneau
    • , Christophe Lavenn
    •  & Susumu Kitagawa
  • Article |

    Nickel-rich layered oxides, such as NCM622, are promising cathode materials for lithium batteries, but chemo-mechanical failures hinder their practical application. Now the solid-state synthesis of NCM622 has been studied using multiscale in situ techniques, and kinetic competition between precursor decomposition and lithiation has been observed to lead to spatially heterogeneous intermediates and the formation of defects that are detrimental to cycling.

    • Hyeokjun Park
    • , Hayoung Park
    •  & Kisuk Kang
  • Article |

    The planar hexazine dianion ring (N62), which had previously been predicted to exist, has now been synthesized from potassium azide (KN3) under laser heating in a diamond anvil cell above 45 GPa; it remains metastable down to 20 GPa. By contrast, at 30 GPa an unusual N2-containing compound with the formula K3(N2)4 was produced.

    • Yu Wang
    • , Maxim Bykov
    •  & Alexander F. Goncharov
  • News & Views |

    Electron spin relaxation, important in quantum information science, can be slowed down at clock transitions — which are insensitive to magnetic noise. It has now been shown that such transitions can be tuned, to high frequency, in rare-earth coordination complexes through control of s- and d-orbital mixing.

    • Eric J. L. McInnes
  • Article |

    Halogen-bonded co-crystals of a fluorinated azobenzene derivative and a volatile co-former can be cut, carved or engraved with micrometre-scale precision using low-power visible light. The proposed mechanism involves the local evaporation of the volatile component followed by recrystallization of the azobenzene co-former near the edge of the irradiation area.

    • T. H. Borchers
    • , F. Topić
    •  & C. J. Barrett
  • Article |

    The s-orbital mixing into the spin-bearing d orbital associated with a molecular Lu(II) complex is shown to both reduce spin–orbit coupling and increase electron–nuclear hyperfine interactions, which substantially improves electron spin coherence. Combined with the potential to tune interactions through coordination chemistry, it makes this system attractive for quantum information applications.

    • Krishnendu Kundu
    • , Jessica R. K. White
    •  & Stephen Hill
  • Article |

    Coacervate microdroplets formed from pH- and redox-responsive peptides and self-assembled by liquid–liquid phase separation have been shown to quickly recruit macromolecular therapeutics—such as peptides, large proteins and mRNAs—and directly enter the cytosol of cells via a non-endocytic pathway. The subsequent release of therapeutic cargo is mediated by endogenic glutathione.

    • Yue Sun
    • , Sze Yi Lau
    •  & Ali Miserez
  • News & Views |

    The adsorption of molecules onto a surface from solution generally proceeds spontaneously by means of an equilibrium process. Now, it has been shown that macrocycles can be pumped onto a MOF substrate through the formation of mechanical bonds in a ratcheting mechanism that results in an out-of-equilibrium state.

    • Liang Zhang
  • Article |

    Borophene, a two-dimensional boron sheet, can adopt a variety of polymorphic structures that are predicted to possess interesting and potentially useful electronic properties. Micrometre-scale single-crystal borophene domains have now been grown on a square-lattice Cu(100) surface. The resulting boron sheets feature a rectangular unit cell, intrinsic stripe modulations and an unusual electron band structure.

    • Rongting Wu
    • , Stephen Eltinge
    •  & Ivan Božović
  • News & Views |

    Innovations in instrumentation together with new strategies of data collection and processing have been shown to solve the problem of data quality for time-resolved in situ X-ray diffraction studies on ball milling, opening new horizons in mechanochemistry.

    • Elena Boldyreva
  • News & Views |

    Bilayer borophene, predicted to be stabilized by interlayer linkages, has now been grown by molecular beam epitaxy on copper and silver surfaces in two independent studies. The growth substrate and temperature are found to influence the lattice structures formed.

    • Maryam Ebrahimi
  • Article |

    Water-walking insects harness capillary forces by changing body posture to climb or descend the meniscus between water and a solid object. Now, autonomous aqueous-based synthetic systems have been shown to overcome the meniscus barrier and shuttle cargo subsurface between a landing site and targeted drop-off sites.

    • Ganhua Xie
    • , Pei Li
    •  & Thomas P. Russell
  • Article |

    Degradable polymers are important for technological applications and sustainability, but they remain difficult to access via ring-opening metathesis polymerization (ROMP). Now, commercial 2,3-dihydrofuran is shown to be an effective ROMP comonomer for various norbornenes. This copolymerization generates new acid-degradable polymers with controlled molecular weights, different functionalities and tunable properties.

    • John D. Feist
    • , Daniel C. Lee
    •  & Yan Xia
  • Article |

    Layered materials held together by weak interactions can be exfoliated into monolayers that retain the structure and composition of their bulk counterpart, but this has remained challenging to achieve for non-van der Waals materials. Now, AgCrS2 has been exfoliated into such [CrS2]Ag[CrS2] nanosheets through intercalation with tetraalkylammonium cations chosen for their suitable redox potential. The nanosheets show superionic behaviour at room temperature.

    • Jing Peng
    • , Yuhua Liu
    •  & Yi Xie
  • News & Views |

    The precisely ordered helical structures of biomacromolecules have long-inspired chemists to create synthetic helical polymers. Now, a new step-growth approach has enabled facile synthesis of helical polymers through the highly efficient sulfur(vi) fluoride exchange click chemistry.

    • Cangjie Yang
    •  & Jia Niu
  • Article |

    Nature uses out-of-equilibrium systems to control hierarchical assembly. Now, a dissipative chemical system has been shown to slowly release monomer DNA strands from a high-energy reservoir, regulating self-assembly by switching the mechanism of supramolecular polymerization at the single-molecule level. This process heals fibre defects, converting branched, heterogeneous networks into nanocable superstructures.

    • Felix J. Rizzuto
    • , Casey M. Platnich
    •  & Hanadi F. Sleiman
  • Article |

    Machine learning has now been shown to enable the de novo design of abiotic nuclear-targeting miniproteins. To achieve this, high-throughput experimentation was combined with a directed evolution-inspired deep-learning approach in which the molecular structures of natural and unnatural residues are represented as topological fingerprints. The designed miniproteins, called Mach proteins, are non-toxic and can efficiently deliver antisense cargo in mice.

    • Carly K. Schissel
    • , Somesh Mohapatra
    •  & Bradley L. Pentelute
  • News & Views |

    Among the tens of thousands of reported hybrid organic–inorganic crystals, only a small fraction of them are known to form a stable liquid upon heating. Now, a family of hybrid perovskites is shown to melt and, upon cooling, form glasses with a compelling combination of properties.

    • Morten M. Smedskjaer
    •  & Søren S. Sørensen
  • Article |

    Depolymerizable polymers can potentially address challenges in polymer sustainability, but most existing systems lack the useful thermomechanical properties of traditional ones. Now, it has been shown that depolymerizable polymers based on olefin metathesis show good thermal stability as well as versatile mechanical properties and that the monomers used to make them can be prepared from abundant materials.

    • Devavrat Sathe
    • , Junfeng Zhou
    •  & Junpeng Wang
  • Article |

    Porous materials are promising candidates for the cost- and energy-efficient separation of ethylene and ethane from gas mixtures: an important but challenging industrial process. Now, a hydrogen-bonded organic framework has been reported that is stable under harsh conditions and can take up ethylene at practical temperatures—with very high selectivity over ethane—through a gating mechanism.

    • Yisi Yang
    • , Libo Li
    •  & Banglin Chen
  • Article |

    Oxidation states help chemists to understand the bonding, properties and reactivity of compounds, but they can be difficult to determine for metal ions in extended crystalline materials. Now, oxidation states manually assigned to metal–organic frameworks have been harvested from the Cambridge Structural Database and used to build a machine-learning model that predicts oxidation states in metal–organic frameworks with good accuracy.

    • Kevin Maik Jablonka
    • , Daniele Ongari
    •  & Berend Smit
  • Article |

    Although many systems that involve protocell–protocell interactions have been developed, there are fewer reports of protocell–environment interactive systems. Now, helical hydrogel filaments—in which enzyme-containing proteinosomes are immobilized—have been shown to contract and expand as the local chemical environment changes. Enzyme processing regulates the chemomechanical responses to generate different modes of actuation in the soft microstructures.

    • Ning Gao
    • , Mei Li
    •  & Stephen Mann
  • Article |

    Although monolayers of N-heterocyclic carbenes (NHCs) readily form on metals, surface reactivity usually hinders their self-assembly on semiconductors. Now, it has been shown that thermally stable, well-ordered monolayers of NHCs can be formed on silicon surfaces. A large reduction in work function is observed and steric effects enable sufficient diffusivity of the NHCs.

    • Martin Franz
    • , Sandhya Chandola
    •  & Mario Dähne
  • Article |

    On-surface, ultra-high vacuum conditions enable two-dimensional polymerizations to be precisely studied—often with submolecular resolution—but these syntheses are typically thermally activated, which can lead to high defect densities and relatively small domain sizes. Now, a self-assembled monolayer of a three-bladed fantrip monomer on alkane-passivated graphite has been covalently crosslinked into a mesoscale-ordered two-dimensional polymer by [4+4] photocycloaddition.

    • Lukas Grossmann
    • , Benjamin T. King
    •  & Markus Lackinger
  • News & Views |

    Colloidal self-assembly requires carefully balanced particle interactions that are often incompatible with the mechanical disturbances associated with macroscopic-scale manufacturing. Now, a practical bottom-up route has enabled the production of bulk solid materials with nanoscale components.

    • Theodore Hueckel
    •  & Stefano Sacanna
  • Article |

    Some flexible metal–organic frameworks are known to exhibit an adaptive behaviour as they convert between two stable forms in response to their environment. Now, a metal–organic framework based on nonlinear linkers has been shown to adopt a much more complex family of degenerate disordered configurations, which can be reversibly interconverted through guest exchange.

    • S. Ehrling
    • , E. M. Reynolds
    •  & S. Kaskel
  • Article |

    Photoinduced spin crossover offers a convenient handle on the spin states and magnetic interactions within a material, which is promising for the development of photoresponsive nanomagnets. Now, a Wv–CN–Feii-based coordination polymer has been prepared that behaves either as a single-chain magnet or as single-molecule magnets under different light irradiations. Its magnetic hysteresis can also be switched on and off.

    • Liang Zhao
    • , Yin-Shan Meng
    •  & Tao Liu
  • Article |

    Nanoparticulate platinum is a highly active catalyst, but it is scarce, expensive and not always sufficiently durable. Now, barium platinate has been used as a vehicle to preserve platinum as an oxide during the solid-state synthesis of a Pt-doped titanate perovskite; this enables the production of a structure with active and stable Pt nanoparticles on the perovskite surface that catalyses CO oxidation.

    • Maadhav Kothari
    • , Yukwon Jeon
    •  & John T. S. Irvine
  • Article |

    A series of dicyanamide-based hybrid organic–inorganic perovskite structures has been shown to melt at temperatures below 300 °C. On melt-quenching, they form glasses that possess coordination bonding and show very low thermal conductivities and moderate electrical conductivities as well as polymer-like thermomechanical properties.

    • Bikash Kumar Shaw
    • , Ashlea R. Hughes
    •  & Thomas D. Bennett
  • Article |

    In atomic solids, substitutional doping is a powerful approach to modulating materials properties. Now, three substitutional mixtures of {Co6Se8} and {Cr6Te8} clusters in a crystal lattice with C60 fullerenes have been prepared. At two Co:Cr mixing ratios, the solid solutions showed particularly high electrical conductivities and low activation barriers for electron transport, owing to their structural heterogeneity.

    • Jingjing Yang
    • , Jake C. Russell
    •  & Colin Nuckolls
  • Article |

    The development of metal–organic magnets that combine tunable magnetic properties with other desirable physical properties remains challenging despite numerous potential applications. Now, a mixed-valent chromium–triazolate material has been prepared that exhibits itinerant ferromagnetism with a magnetic ordering temperature of 225 K, a high conductivity and large negative magnetoresistance (23%).

    • Jesse G. Park
    • , Brianna A. Collins
    •  & Jeffrey R. Long
  • Article |

    On-surface dehydrogenative bond formation between sp3-hybridized carbon atoms usually requires high temperatures. Now, it has been shown that the higher homologue, silicon, can undergo dehydrogenative polymerization at room temperature on metal surfaces. This process creates well-ordered structures on Au(111) and Cu(111), with different stereoselectivity depending on the metal.

    • Lacheng Liu
    • , Henning Klaasen
    •  & Armido Studer
  • Article |

    Molecular catalysts can be made more practical by anchoring them onto electrode surfaces, but such systems are less stable than standard heterogeneous electrocatalysts. Now, supramolecular hosts bound to electrode surfaces have enabled the immobilization of molecular electrocatalysts through host–guest interactions. Desorbed or degraded guest molecules can be replaced with fresh guest molecules, extending their lifetimes.

    • Laurent Sévery
    • , Jacek Szczerbiński
    •  & S. David Tilley
  • Article |

    Redox mediators are important for improving the rechargeability of metal–air batteries, however, how they affect singlet oxygen formation and hence parasitic chemistry is unclear, hindering strategies for their improvement. Now, the mechanism of mediated peroxide and superoxide oxidation is elucidated, explaining how redox mediators either enhance or suppress singlet oxygen formation.

    • Yann K. Petit
    • , Eléonore Mourad
    •  & Stefan A. Freunberger
  • Article |

    A metal–organic framework (MOF) has been prepared that features dynamic rotors embedded within its crystalline lattice. The dipolar F2-functionalized carboxylate linkers—rapidly rotating at room temperature—show correlated behaviour upon cooling, converting the paraelectric MOF into an ordered antiferroelectric one below 100 K.

    • Y.-S. Su
    • , E. S. Lamb
    •  & S. E. Brown
  • Article |

    Some metal–organic frameworks (MOFs) can promote photocatalytic hydrogen evolution and others can facilitate water oxidation, but it is difficult to combine them into a single system. Now, by confining MOFs that can promote each half-reaction within the hydrophobic and hydrophilic regions of a liposome to avoid the fast recombination of photo-generated charges, evidence for water splitting has been obtained.

    • Huihui Hu
    • , Zhiye Wang
    •  & Cheng Wang
  • Article |

    Stimuli-responsive control of drug activation can mitigate issues caused by poor drug selectivity. Now, it has been shown that mechanical force—induced by ultrasound—can be used to activate drugs in three different systems. This approach has enabled the activation of antibiotics or a cytotoxic anticancer agent from synthetic polymers, polyaptamers and nanoparticle assemblies.

    • Shuaidong Huo
    • , Pengkun Zhao
    •  & Andreas Herrmann
  • Article |

    Fluorinated polyacetylene has typically proven to be inaccessible using traditional polymer synthesis, but there is much interest in its predicted properties. Now, a mechanochemical unzipping strategy has succeeded in the synthesis of a gold-coloured, semiconducting fluorinated polyacetylene with improved stability in air compared to polyacetylene.

    • Benjamin R. Boswell
    • , Carl M. F. Mansson
    •  & Noah Z. Burns
  • Article |

    A wide variety of organic and inorganic compounds show π-aromaticity, yet for all-metal systems it has remained restricted to compounds with three to five atoms. Now, the anionic cluster [Th@Bi12]4− has been shown to exhibit π-aromaticity, with a significant ring current despite relying on the delocalization of only two π-electrons.

    • Armin R. Eulenstein
    • , Yannick J. Franzke
    •  & Stefanie Dehnen
  • Article |

    Cyanide-bridged CoFe coordination networks exhibit photomagnetism because of coupled charge-transfer and spin transition. Now, femtosecond X-ray and optical absorption spectroscopies have enabled the electronic and structural dynamics of this light-induced process to be disentangled and show that it is the spin transition on the cobalt atom, occurring within ~50 fs, that induces the Fe-to-Co charge-transfer within ~200 fs.

    • Marco Cammarata
    • , Serhane Zerdane
    •  & Eric Collet
  • Article |

    Metal–organic frameworks (MOFs) can combine porosity and magnetic order within their lattice, which makes them attractive for the development of stimuli-responsive magnets. Now, a MOF has been prepared that converts from a ferrimagnet to a paramagnet with CO2 uptake, and returns to the ferrimagnetic state on releasing CO2.

    • Jun Zhang
    • , Wataru Kosaka
    •  & Hitoshi Miyasaka
  • Article |

    The self-assembly of haemoglobin-containing erythrocyte membrane fragments onto the surface of preformed coacervates has been used to make hybrid synthetic cells that can initiate nitric-oxide-induced vasodilation. These synthetic cells encapsulate enzymes that generate a flux of nitric oxide, as well as exhibiting high haemocompatibility and increased blood circulation times.

    • Songyang Liu
    • , Yanwen Zhang
    •  & Stephen Mann
  • Article |

    Interactions that generate directed movement in response to a chemical stimulus occur in nature but have been difficult to realize in synthetic systems. Now, it has been shown that asymmetric micelle-mediated exchange of haloalkanes can be used to create tunable chasing interactions between chemically distinct microdroplets. Collective interactions lead to the formation of droplet assemblies with emergent self-organization and collective behaviours.

    • Caleb H. Meredith
    • , Pepijn G. Moerman
    •  & Lauren D. Zarzar