Graphene articles within Nature Chemistry

Featured

  • Article |

    2D–2D heterostructures are typically held together by van der Waals interactions. Now, an on-device MoS2–graphene heterostructure has been prepared that is covalently linked through a bifunctional molecule featuring a maleimide and a diazonium group. The electronic properties of the resulting heterostructure are shown to be dominated by the molecular interface.

    • Manuel Vázquez Sulleiro
    • , Aysegul Develioglu
    •  & Emilio M. Pérez
  • News & Views |

    The electronic structure of an electrode can affect the electron transfer rate of electrochemical processes at its surface. Now, it has been shown that varying the ‘twist’ angle between two stacked layers of graphene modifies the bilayer electronic structure and provides a new dimension to control interfacial redox activity.

    • Oluwasegun J. Wahab
    •  & Patrick R. Unwin
  • Article |

    Controlling the crystallographic registry of layered materials through interlayer twist angles has introduced a distinctive degree of freedom for tuning their electronic behaviour. Now, the interfacial electrochemical kinetics of solution-phase redox complexes at twisted bilayer graphene electrodes have been modulated by the angle-dependent tuning of moiré-derived flat bands.

    • Yun Yu
    • , Kaidi Zhang
    •  & D. Kwabena Bediako
  • Article |

    The controllable functionalization of graphene at the molecular level may prove useful for graphene-based electronics, but is difficult to do in a precise fashion. Now it has been shown that a photocycloaddition reaction between a hydrogen-bonded network of maleimide-derived molecules and single-layer graphene can produce a functionalized array with long-range order.

    • Miao Yu
    • , Chong Chen
    •  & Federico Rosei
  • News & Views |

    Sodium chloride phases with unconventional non-1:1 stoichiometries are known to exist under high-pressure conditions. Now, Na2Cl and Na3Cl two-dimensional crystals have been obtained under ambient conditions, on graphene surfaces, from dilute solutions.

    • Artem R. Oganov
  • Article |

    The common form of salt has a 1:1 ratio of Na+ and Cl; however, species that deviate from this can be found under extreme conditions, such as high pressure. Now, as a result of cation–π interactions that promote ion–surface adsorption, Na2Cl and Na3Cl have been observed as two-dimensional crystals on graphene at ambient conditions.

    • Guosheng Shi
    • , Liang Chen
    •  & Haiping Fang
  • Article |

    Aggregation usually prevents dissolution of graphene in water. Now, hydroxide ion adsorption has been shown to allow the stabilization of true single-layer graphene in water — with no surfactant required — so long as the liquid is degassed beforehand. The resulting aqueous dispersions can contain high concentrations of exfoliated graphene that are stable for several months.

    • George Bepete
    • , Eric Anglaret
    •  & Carlos Drummond
  • Article |

    Lateral anchoring of heteromolecules to graphene paves the way for the creation of hybrid materials with tunable properties. Now, following a surface-assisted dehydrogenative coupling reaction, the edges of graphene on silver have been functionalized with porphines. This enables the assembly of well-defined multifunctional graphene-based nanostructures.

    • Yuanqin He
    • , Manuela Garnica
    •  & Johannes V. Barth
  • News & Views |

    The calcination of metal–organic framework (MOF) precursors is promising for the preparation of nanoscale carbon materials, but the resulting morphologies have remained limited. Now, controlling the growth of precursor MOFs has enabled 1D carbon nanorods to be fabricated — these can then be readily unravelled into 2D graphene nanoribbons.

    • Jing Tang
    •  & Yusuke Yamauchi
  • Article |

    Graphene possesses numerous interesting properties yet the preparation of pristine sheets has remained challenging, hindering practical applications. Now, a rapid, highly efficient step has been devised that uses microwave irradiation in oligomeric ionic liquids to exfoliate graphite into pristine ‘single layer’ sheets (<1 nm thick). A concentrated dispersion of the resulting material behaves as a physical gel.

    • Michio Matsumoto
    • , Yusuke Saito
    •  & Takuzo Aida
  • Article |

    Porous-alumina filter discs typically used to prepare graphene-oxide films are found to corrode during filtration and release aluminium ions that crosslink the negatively charged sheets and make the films insoluble in water. In contrast, aluminium-free graphene-oxide films are significantly weaker and readily disintegrate in water.

    • Che-Ning Yeh
    • , Kalyan Raidongia
    •  & Jiaxing Huang
  • Article |

    Intercalation in graphite is generally driven by partial oxidation or reduction of the graphene sheets. Now, it has been shown that graphite microcrystals can be intercalated by Brønsted acids by heating a liquid suspension to dryness. The intercalated acid molecules interact weakly with the carbon sheets but assist in their exfoliation to single- and few-layer graphene.

    • Nina I. Kovtyukhova
    • , Yuanxi Wang
    •  & Thomas E. Mallouk
  • News & Views |

    The controlled synthesis of two-dimensional carbon nanomaterials enables their properties to be tailored for potential device applications. Functionalized graphene-like nanosheets with controlled thickness have now been obtained by irradiating monolayers of carbon-rich molecular precursors at room temperature.

    • Jean-François Morin
  • Article |

    Strained hydrocarbons are more than molecular curiosities — they often have promising materials properties, and even just making them offers challenges that push the limits of synthetic methods. Now, a short, efficient and room-temperature synthesis of [5]cycloparaphenylene, a carbon nanohoop with 119 kcal per mol of strain energy, is reported.

    • Paul J. Evans
    • , Evan R. Darzi
    •  & Ramesh Jasti
  • News & Views |

    The organic synthesis of graphene nanostructures requires exceptionally efficient chemistry and is made more challenging by difficulties in characterization and processing. Now, solution-dispersible graphene nanoribbons have been synthesized on the gram scale.

    • C. Scott Hartley
  • Article |

    Graphene oxide sheets hold promise for a variety of applications but are disordered and inhomogeneous on synthesis. Although processes to resolve this exist they typically remove oxygen groups, affecting the sheets’ properties. Now, a scalable, mild thermal annealing procedure has been devised that enhances the optical and electronic properties of graphene oxide sheets through phase transformation, while preserving their oxygen functionality.

    • Priyank V. Kumar
    • , Neelkanth M. Bardhan
    •  & Jeffrey C. Grossman
  • Article |

    Liquid-phase-processable graphene nanoribbons (GNRs) over 200 nm long and with well-defined structures have now been synthesized by a bottom-up method, and are found to have a large optical bandgap of 1.88 eV. Scanning probe microscopy revealed highly ordered self-assembled monolayers of the GNRs, and the high intrinsic charge-carrier mobility of individual ribbons was characterized by terahertz spectroscopy.

    • Akimitsu Narita
    • , Xinliang Feng
    •  & Klaus Müllen
  • News & Views |

    A nanographene compound incorporating five- and seven-membered rings is found to have a highly distorted non-planar structure and serves as a model system for studying the effect of defects in graphene sheets.

    • Benjamin T. King
  • Article |

    The chemical modification of graphene is important for its use in many applications. Now it is shown that the reactivity of graphene towards covalent modification varies widely depending on its underlying support substrate, and that the substrate can be patterned to induce spatial control of chemical reactions in graphene.

    • Qing Hua Wang
    • , Zhong Jin
    •  & Michael S. Strano
  • Article |

    Graphene oxide produced via the standard Hummers method possesses a high degree of chemical inhomogeneity and limited reversibility. Now, it has been shown that an alternative ultra-high-vacuum approach for oxidizing epitaxial graphene yields uniform epoxy functionalization with thermal reversibility at temperatures as low as 260 °C.

    • Md. Zakir Hossain
    • , James E. Johns
    •  & Mark C. Hersam
  • Article |

    Efforts to make graphene more useful for applications include altering its bandgap and increasing its processability. Both of these can be solved by chemically modifying the material, and now a wet chemical method has been developed that functionalizes graphene in bulk starting from pristine graphite.

    • Jan M. Englert
    • , Christoph Dotzer
    •  & Andreas Hirsch
  • Perspective |

    Phenalenyl — a triangular neutral radical consisting of three adjacent benzene rings — and π-conjugated derivatives based on the same motif, can be viewed as 'open-shell graphene fragments'. This Perspective discusses their electronic-spin structures, the properties that arise from their unpaired electrons, and highlights their potential applications for molecular spin devices.

    • Yasushi Morita
    • , Shuichi Suzuki
    •  & Takeji Takui
  • News & Views |

    Rational synthesis of large polycyclic molecules is on its way. A bottom-up strategy for molecular assembly to tailor-make new molecules has been applied to fabricate nanographenes.

    • José A. Martin-Gago
  • Review Article |

    Chemically derived graphene oxide (GO) has recently moved on from simply being a graphene precursor to attracting interest for its own properties. This Review discusses how the presence of oxygenated groups and domains of sp2- and sp3-hybridized carbons makes GO tunable and promising for various physical and biological applications.

    • Kian Ping Loh
    • , Qiaoliang Bao
    •  & Manish Chhowalla
  • Article |

    Large polycyclic aromatic hydrocarbons or nanographenes have huge potential for organic electronics applications, but it is challenging to synthesize them in a controlled way. Now, a surface chemical route has been used to produce tailored nanographenes with atomically precise control over the final structure.

    • Matthias Treier
    • , Carlo Antonio Pignedoli
    •  & Roman Fasel
  • Research Highlights |

    Layers of water adsorbed on a mica surface have been trapped under a graphene sheet and their structure determined by atomic force microscopy.

    • Anne Pichon
  • Research Highlights |

    A heated AFM tip has been used to create nanoscale patterns of reduced graphene oxide.

    • Gavin Armstrong
  • Article |

    Usable electronic devices exploiting the attractive properties of graphene will require narrow ‘nanoribbons’ of the atom-thin carbon sheets. Ribbons narrower than 5 nm are desirable for effective devices, but conventional lithography is limited to 20 nm. Now, a gas-phase chemical approach for etching graphene from the edges has produced graphene nanoribbons below 5 nm.

    • Xinran Wang
    •  & Hongjie Dai
  • Research Highlights |

    The hydrophilic edges and hydrophobic centres of graphene oxide sheets mean they act as surfactants.

    • Neil Withers
  • Article |

    Thermal reduction of graphene oxide is an attractive route towards the preparation of graphene, but complete removal of residual oxygen is problematic. Now, molecular dynamics simulations elucidate the chemical changes involved in this process.

    • Akbar Bagri
    • , Cecilia Mattevi
    •  & Vivek B. Shenoy
  • Article |

    Although fullerenes have been synthesized from graphite for a long time, the exact mechanism is relatively unknown. Now, in situ microscopy and quantum chemical modelling have directly followed the formation of fullerenes from a single graphitic sheet — graphene.

    • Andrey Chuvilin
    • , Ute Kaiser
    •  & Andrei N. Khlobystov
  • Research Highlights |

    Molybdenum and tungsten sulfide nanosheets, analogous to graphene, have been made.

    • Neil Withers