Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging modalities for the diagnosis of pulmonary hypertension in systemic sclerosis

Abstract

Patients with systemic sclerosis (SSc) are at considerable risk of developing pulmonary arterial hypertension (PAH). PAH has a dramatic impact on the natural history of the disease and overall survival of the patient. Despite progress made in elucidating the pathogenesis of PAH and introduction of novel therapies, SSc-related PAH (SScPAH) remains a devastating disease that responds poorly to therapy. Although early diagnosis is of paramount importance, there are no available validated strategies for assessing SScPAH because reliable evaluation of the structure and function of the right ventricle is difficult owing to its complex geometry. Additionally, myocardial fibrosis might affect cardiac contractility and contribute to heart failure. Modern imaging modalities, such as novel echocardiographic techniques and cardiac MRI, are highly sensitive, quantitative and reproducible methods that allow noninvasive assessment of regional and global myocardial performance without relying on geometric assumptions. In this Review, we examine the imaging modalities currently available, focusing on evolving diagnostic imaging methodologies and their possible clinical implications in the SScPAH setting.

Key Points

  • Systemic sclerosis-related pulmonary arterial hypertension (SScPAH) is a devastating complication of systemic sclerosis (SSc) that increases morbidity and mortality

  • The accurate and reliable assessment of right ventricular function and morphology with noninvasive modalities is important for the diagnosis and the overall management of the disease

  • Echocardiography is a simple, safe, cheap and easily reproducible diagnostic tool for screening patients with SSc who are at high risk of developing PAH

  • Tissue Doppler and strain rate imaging can detect abnormalities of systolic and diastolic ventricular function in asymptomatic patients with SSc

  • Cardiac MRI offers a quantitative and comprehensive approach to assess the function and extent of right ventricular remodeling in patients with SScPAH, with potential future clinical applications in early diagnosis and patient monitoring

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conventional and tissue Doppler echocardiography for the assessment of SScPAH.
Figure 2: Four-chamber steady state free precession cardiac MRI sequence for the assessment of biventricular function in a patient with systemic sclerosis-related pulmonary arterial hypertension.
Figure 3: Schematic summary of pathogenetic mechanisms involved in SScPAH and the imaging modalities used for their diagnostic assessment.

Similar content being viewed by others

References

  1. Steen, V. D. & Medsger, T. A. Changes in causes of death in systemic sclerosis, 1972–2002. Ann. Rheum. Dis. 66, 940–944 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tyndall, A. J. et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann. Rheum. Dis. 69, 1809–1815 (2010).

    Article  PubMed  Google Scholar 

  3. Denton, C. P. & Black, C. M. Pulmonary hypertension in systemic sclerosis. Rheum. Dis. Clin. North Am. 29, 335–349 (2003).

    Article  PubMed  Google Scholar 

  4. Galiè, N. et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur. Heart J. 30, 2493–2537 (2009).

    Article  PubMed  Google Scholar 

  5. Schachna, L. & Wigley, F. M. Targeting mediators of vascular injury in scleroderma. Curr. Opin. Rheumatol. 14, 686–693 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Overbeek, M. J. et al. Pulmonary arterial hypertension in limited cutaneous systemic sclerosis: a distinctive vasculopathy. Eur. Respir. J. 34, 371–379 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Dorfmüller, P. et al. Fibrous remodeling of the pulmonary venous system in pulmonary arterial hypertension associated with connective tissue diseases. Hum. Pathol. 38, 893–902 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. Chatterjee, S. Pulmonary hypertension in systemic sclerosis. Semin. Arthritis Rheum. 41, 19–37 (2011).

    Article  PubMed  Google Scholar 

  9. Fernandes, F. et al. Cardiac remodeling in patients with systemic sclerosis with no signs or symptoms of heart failure: an endomyocardial biopsy study. J. Card. Fail. 9, 311–317 (2003).

    Article  PubMed  Google Scholar 

  10. Kahan, A. et al. Nifedipine and thallium-201 myocardial perfusion in progressive systemic sclerosis. N. Engl. J. Med. 314, 1397–1402 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Champion, H. C. The heart in scleroderma. Rheum. Dis. Clin. North Am. 34, 181–190 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fisher, M. R. et al. Clinical differences between idiopathic and scleroderma-related pulmonary hypertension. Arthritis Rheum. 54, 3043–3050 (2006).

    Article  PubMed  Google Scholar 

  13. Dorfmüller, P., Montani, D. & Humbert, M. Beyond arterial remodelling: pulmonary venous and cardiac involvement in patients with systemic sclerosis-associated pulmonary arterial hypertension. Eur. Respir. J. 35, 6–8 (2010).

    Article  PubMed  Google Scholar 

  14. Hachulla, E. & Denton, C. P. Early intervention in pulmonary arterial hypertension associated with systemic sclerosis: an essential component of disease management. Eur. Respir. Rev. 19, 314–320 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Mathai, S. C. & Hassoun, P. M. Therapy for pulmonary arterial hypertension associated with systemic sclerosis. Curr. Opin. Rheumatol. 21, 642–648 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clements, P. J. et al. on behalf of the Pulmonary Arterial Hypertension Quality Enhancement Research Initiative (PAH-QuERI) Investigators. The pulmonary arterial hypertension quality enhancement research initiative: comparison of patients with idiopathic PAH to patients with systemic sclerosis-associated, PAH. Ann. Rheum. Dis. 71, 249–252 (2011).

    Article  PubMed  CAS  Google Scholar 

  17. Avouac, J., Wipff, J., Kahan, A. & Allanore, Y. Effects of oral treatments on exercise capacity in systemic sclerosis related pulmonary arterial hypertension: a meta-analysis of randomised controlled trials. Ann. Rheum. Dis. 67, 808–814 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Mukerjee, D. et al. Prevalence and outcome in systemic sclerosis associated pulmonary arterial hypertension: application of a registry approach. Ann. Rheum. Dis. 62, 1088–1093 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Phung, S. et al. Prevalence of pulmonary arterial hypertension in an Australian scleroderma population: screening allows for earlier diagnosis. Intern. Med. J. 39, 682–691 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Hachulla, E. et al. Early detection of pulmonary arterial hypertension in systemic sclerosis: a French nationwide prospective multicenter study. Arthritis Rheum. 52, 3792–3800 (2005).

    Article  PubMed  Google Scholar 

  21. Avouac, J. et al. Prevalence of pulmonary hypertension in systemic sclerosis in European Caucasians and metaanalysis of 5 studies. J. Rheumatol. 37, 2290–2298 (2010).

    Article  PubMed  Google Scholar 

  22. Hoeper, M. M. et al. Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers. J. Am. Coll. Cardiol. 48, 2546–2552 (2006).

    Article  PubMed  Google Scholar 

  23. Keysser, G., Schwerdt, C. & Taege, C. Right-heart failure after right heart catheterization in a patient with scleroderma and suspected pulmonary hypertension. Rheumatol. Int. 28, 1269–1271 (2008).

    Article  PubMed  Google Scholar 

  24. Dimitroulas, T., Giannakoulas, G., Karvounis, H., Settas, L. & Kitas, G. D. Biomarkers in systemic sclerosis-related pulmonary arterial hypertension. Curr. Vasc. Pharmacol. 9, 213–219 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Kepez, A. et al. Detection of subclinical cardiac involvement in systemic sclerosis by echocardiographic strain imaging. Echocardiography 25, 191–197 (2008).

    Article  PubMed  Google Scholar 

  26. D'Andrea, A. et al. Early impairment of myocardial function in systemic sclerosis: noninvasive assessment by Doppler myocardial and strain rate imaging. Eur. J. Echocardiogr. 6, 407–418 (2005).

    Article  PubMed  Google Scholar 

  27. Bezante, G. P. et al. Cardiac magnetic resonance imaging detects subclinical right ventricular impairment in systemic sclerosis. J. Rheumatol. 34, 2431–2437 (2007).

    PubMed  Google Scholar 

  28. Masuyama, T. et al. Continuous-wave Doppler echocardiographic detection of pulmonary regurgitation and its application to noninvasive estimation of pulmonary artery pressure. Circulation 74, 484–492 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. Ghofrani, H. A., Wilkins, M. W. & Rich, S. Uncertainties in the diagnosis and treatment of pulmonary arterial hypertension. Circulation 118, 1195–1201 (2008).

    Article  PubMed  Google Scholar 

  30. Arcasoy, S. M. et al. Echocardiographic assessment of pulmonary hypertension in patients with advanced lung disease. Am. J. Respir. Crit. Care Med. 167, 735–740 (2003).

    Article  PubMed  Google Scholar 

  31. Fisher, M. R. et al. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am. J. Respir. Crit. Care Med. 179, 615–621 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sánchez-Román, J. et al. Screening for PAH in patients with systemic sclerosis: focus on Doppler echocardiography. Rheumatology (Oxford) 47 (Suppl. 5), v33–v35 (2008).

    Article  Google Scholar 

  33. Denton, C. P., Cailes, J. B. & Phillips, G. D. Comparison of Doppler echocardiography and right heart catheterization to assess pulmonary hypertension in systemic sclerosis. Br. J. Rheumatol. 36, 239–243 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Mukerjee, D. et al. Echocardiography and pulmonary function as screening tests for pulmonary arterial hypertension in systemic sclerosis. Rheumatology 43, 461–466 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. de Azevedo, A. B., Sampaio-Barros, P. D., Torres, R. M. & Moreira, C. Prevalence of pulmonary hypertension in systemic sclerosis. Clin. Exp. Rheumatol. 23, 447–454 (2005).

    PubMed  Google Scholar 

  36. Pope, J. E. et al. Prevalence of elevated pulmonary arterial pressures measured by echocardiography in a multicenter study of patients with systemic sclerosis. J. Rheumatol. 32, 1273–1278 (2005).

    PubMed  Google Scholar 

  37. Murata, I. et al. Clinical evaluation of pulmonary hypertension in systemic sclerosis and related disorders. A Doppler echocardiographic study of 135 Japanese patients. Chest 111, 36–43 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Dimitroulas, T. et al. Neurohormonal activation in patients with systemic sclerosis-related pulmonary arterial hypertension. Int. J. Cardiol. 121, 135–137 (2007).

    Article  PubMed  Google Scholar 

  39. Hachulla, E. et al. Itinér AIR–Sclérodermie Study Group. The three-year incidence of pulmonary arterial hypertension associated with systemic sclerosis in a multicenter nationwide longitudinal study in France. Arthritis Rheum. 60, 1831–1839 (2009).

    Article  PubMed  Google Scholar 

  40. Kowal-Bielecka, O. et al. Echocardiography as an outcome measure in scleroderma-related pulmonary arterial hypertension: a systematic literature analysis by the EPOSS group. J. Rheumatol. 37, 105–115 (2010).

    Article  PubMed  Google Scholar 

  41. Tei, C. et al. Doppler echocardiographic index for assessment of global right ventricular function. J. Am. Soc. Echocardiogr. 9, 838–847 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Vonk, M. C. et al. Right ventricle Tei-index: a tool to increase the accuracy of non-invasive detection of pulmonary arterial hypertension in connective tissue diseases. Eur. J. Echocardiogr. 8, 317–321 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Dimitroulas, T. et al. Left atrial volume and N-terminal pro-B type natriuretic peptide are associated with elevated pulmonary artery pressure in patients with systemic sclerosis. Clin. Rheumatol. 29, 957–964 (2010).

    Article  PubMed  Google Scholar 

  44. Forfia, P. R. et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am. J. Respir. Crit. Care Med. 174, 1034–1041 (2006).

    Article  PubMed  Google Scholar 

  45. Mathai, S. C. et al. Tricuspid annular plane systolic excursion is a robust outcome measure in systemic sclerosis-associated pulmonary arterial hypertension. J. Rheumatol. 38, 2410–2418 (2011).

    Article  PubMed  Google Scholar 

  46. Serra, W. et al. Echocardiography may help detect pulmonary vasculopathy in the early stages of pulmonary artery hypertension associated with systemic sclerosis. Cardiovasc. Ultrasound. 8, 25 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lee, C. Y. et al. Right heart function and scleroderma: insights from tricuspid annular plane systolic excursion. Echocardiography 24, 118–125 (2007).

    Article  PubMed  Google Scholar 

  48. Boueiz, A., Mathai, S. C., Hummers, L. K. & Hassoun, P. M. Cardiac complications of systemic sclerosis: recent progress in diagnosis. Curr. Opin. Rheumatol. 22, 696–703 (2010).

    Article  PubMed  Google Scholar 

  49. de Groote, P. et al. for the ItinerAIR-Scleroderma Investigators. Evaluation of cardiac abnormalities by Doppler echocardiography in a large nationwide multicentric cohort of patients with systemic sclerosis. Ann. Rheum. Dis. 67, 31–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Mele, D. et al. Abnormalities of left ventricular function in asymptomatic patients with systemic sclerosis using Doppler measures of myocardial strain. J. Am. Soc. Echocardiogr. 21, 1257–1264 (2008).

    Article  PubMed  Google Scholar 

  51. Allanore, Y. et al. Prevalence and factors associated with left ventricular dysfunction in the EULAR Scleroderma Trial and Research group (EUSTAR) database of systemic sclerosis patients. Ann. Rheum. Dis. 69, 218–221 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Poanta, L., Dadu, R., Tiboc, C., Rednic, S. & Dumitrascu, D. Systolic and diastolic function in patients with systemic sclerosis. Eur. J. Intern. Med. 20, 378–382 (2009).

    Article  PubMed  Google Scholar 

  53. Dimitroulas, T. et al. Early detection of cardiac involvement in systemic sclerosis assessed by tissue-Doppler echocardiography: relationship with neurohormonal activation and endothelial dysfunction. J. Rheumatol. 37, 993–999 (2010).

    Article  PubMed  Google Scholar 

  54. Meune, C. et al. Cardiac involvement in systemic sclerosis assessed by tissue-doppler echocardiography during routine care: A controlled study of 100 consecutive patients. Arthritis Rheum. 58, 1803–1809 (2008).

    Article  PubMed  Google Scholar 

  55. Hsiao, S. H., Lee, C. Y., Chang, S. M., Lin, S. K. & Liu, C. P. Right heart function in scleroderma: insights from myocardial Doppler tissue imaging. J. Am. Soc. Echocardiogr. 19, 507–514 (2006).

    Article  PubMed  Google Scholar 

  56. Matias C, et al. Speckle-tracking-derived strain and strain-rate analysis: a technique for the evaluation of early alterations in right ventricle systolic function in patients with systemic sclerosis and normal pulmonary artery pressure. J. Cardiovasc. Med. (Hagerstown) 10, 129–134 (2009).

    Article  Google Scholar 

  57. Schattke, S. et al. Early right ventricular systolic dysfunction in patients with systemic sclerosis without pulmonary hypertension: a Doppler tissue and speckle tracking echocardiography study. Cardiovasc. Ultrasound 8, 3 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ramagopalan, S. V., Wotton, C. J., Handel, A. E., Yeates, D. & Goldacre, M. J. Risk of venous thromboembolism in people admitted to hospital with selected immune-mediated diseases: record-linkage study. BMC Med. 9, 1 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Montani, D. et al. Pulmonary veno-occlusive disease: clinical, functional, radiologic, and hemodynamic characteristics and outcome of 24 cases confirmed by histology. Medicine (Baltimore) 87, 220–233 (2008).

    Article  Google Scholar 

  60. Wells, A. U. High-resolution computed tomography and scleroderma lung disease. Rheumatology (Oxford) 47 (Suppl. 5), v59–v61 (2008).

    Article  Google Scholar 

  61. Strollo, D. & Goldin, J. Imaging lung disease in systemic sclerosis. Curr. Rheumatol Rep. 12, 156–161 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. El-Shafie, M. M., Salem, S. S. & Moghazi, A. A. Left ventricular myocardial ischemia in collagen disease associated with pulmonary hypertension: an evaluation by rest-stress gated SPECT and coronary angiography. Nucl. Med. Commun. 32, 641–648 (2011).

    Article  PubMed  Google Scholar 

  63. Hoeper, M. M. et al. Evaluation of right ventricular performance with a right ventricular ejection fraction thermodilution catheter and MRI in patients with pulmonary hypertension. Chest 120, 502–507 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Roeleveld, R. J. et al. Effects of epoprostenol on right ventricular hypertrophy and dilatation in pulmonary hypertension. Chest 125, 572–579 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Vonk-Noordegraaf, A. et al. Early changes of cardiac structure and function in COPD patients with mild hypoxemia. Chest 127, 1898–1903 (2005).

    Article  PubMed  Google Scholar 

  66. Vonk Noordegraaf, A. et al. The effect of right ventricular hypertrophy on left ventricular ejection fraction in pulmonary emphysema. Chest 112, 640–645 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. van Wolferen, S. A. et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur. Heart J. 28, 1250–1257 (2007).

    Article  PubMed  Google Scholar 

  68. Hachulla AL et al. Cardiac magnetic resonance imaging in systemic sclerosis: a cross-sectional observational study of 52 patients. Ann. Rheum. Dis. 68, 1878–1884 (2009).

    Article  PubMed  Google Scholar 

  69. Katz, J. et al. Estimation of right ventricular mass in normal subjects and in patients with primary pulmonary hypertension by nuclear magnetic resonance imaging. J. Am. Coll. Cardiol. 21, 1475–1481 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Grothues, F. et al. Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am. Heart J. 147, 218–223 (2004).

    Article  PubMed  Google Scholar 

  71. Semelka, R. C. et al. Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphologically abnormal left ventricle. Am. Heart J. 119, 1367–1373 (1990).

    Article  CAS  PubMed  Google Scholar 

  72. Hagger, D. et al. Ventricular mass index correlates with pulmonary artery pressure and predicts survival in suspected systemic sclerosis-associated pulmonary arterial hypertension. Rheumatology (Oxford) 48, 1137–1142 (2009).

    Article  Google Scholar 

  73. Saba, T. S., Foster, J., Cockburn, M., Cowan, M. & Peacock, A. J. Ventricular mass index using magnetic resonance imaging accurately estimates pulmonary artery pressure. Eur. Respir. J. 20, 1519–1524 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Roeleveld, R. J. et al. A comparison of noninvasive MRI-based methods of estimating pulmonary artery pressure in pulmonary hypertension. J. Magn. Reson. Imaging 22, 67–72 (2005).

    Article  PubMed  Google Scholar 

  75. King, M. E., Braun, H., Goldblatt, A., Liberthson, R. & Weyman, A. E. Interventricular septal configuration as a predictor of right ventricular systolic hypertension in children: a cross-sectional echocardiographic study. Circulation 68, 68–75 (1983).

    Article  CAS  PubMed  Google Scholar 

  76. Mavrogeni, S. et al. Myocardial inflammation in autoimmune diseases: investigation by cardiovascular magnetic resonance and endomyocardial biopsy. Inflamm. Allergy Drug Targets 8, 390–397 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Nassenstein, K. et al. Detection of myocardial fibrosis in systemic sclerosis by contrast-enhanced magnetic resonance imaging. Rofo. 180, 1054–1060 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Silva, C. et al. Myocardial late gadolinium enhancement in specific cardiomyopathies by cardiovascular magnetic resonance: a preliminary experience. J. Cardiovasc. Med. (Hagerstown) 8, 1076–1079 (2007).

    Article  Google Scholar 

  79. Tzelepis, G. E. et al. Pattern and distribution of myocardial fibrosis in systemic sclerosis: a delayed enhanced magnetic resonance imaging study. Arthritis Rheum. 56, 3827–3836 (2007).

    Article  PubMed  Google Scholar 

  80. Kuehne, T. et al. Magnetic resonance imaging analysis of right ventricular pressure—volume loops: in vivo validation and clinical application in patients with pulmonary hypertension. Circulation 110, 2010–2016 (2004).

    Article  PubMed  Google Scholar 

  81. McCann, G. P., Beek, A. M., Vonk-Noordegraaf, A. & van Rossum, A. C. Delayed Contrast-Enhanced Magnetic Resonance Imaging in Pulmonary Arterial Hypertension. Circulation 112, e268 (2005).

    Article  PubMed  Google Scholar 

  82. McCann, G. P. et al. Extent of MRI delayed enhancement of myocardial mass is related to right ventricular dysfunction in pulmonary artery hypertension. AJR Am. J. Roentgenol. 188, 349–355 (2007).

    Article  PubMed  Google Scholar 

  83. Bogren, H. G. et al. Pulmonary artery distensibility and blood flow patterns: a magnetic resonance study of normal subjects and of patients with pulmonary arterial hypertension. Am. Heart J. 118, 990–999 (1989).

    Article  CAS  PubMed  Google Scholar 

  84. Kondo, C. et al. Pulmonary hypertension: pulmonary flow quantification and flow profile analysis with velocity-encoded cine MR imaging. Radiology 183, 751–758 (1992).

    Article  CAS  PubMed  Google Scholar 

  85. Ley, S. et al. Assessment of hemodynamic changes in the systemic and pulmonary arterial circulation in patients with cystic fibrosis using phase-contrast MRI. Eur. Radiol. 15, 1575–1580 (2005).

    Article  PubMed  Google Scholar 

  86. Jardim, C. et al. Pulmonary artery distensibility in pulmonary arterial hypertension: a MRI pilot study. Eur. Respir. J. 29, 476–481 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Gan, C. T. et al. Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest 132, 1906–1912 (2007).

    Article  PubMed  Google Scholar 

  88. Kang, K. W. et al. Cardiac magnetic resonance imaging-derived pulmonary artery distensibility index correlates with pulmonary artery stiffness and predicts functional capacity in patients with pulmonary arterial hypertension. Circ. J. 75, 2244–2251 (2011).

    Article  PubMed  Google Scholar 

  89. McLure, L. E. & Peacock, A. J. Cardiac magnetic resonance imaging for the assessment of the heart and pulmonary circulation in pulmonary hypertension. Eur. Respir. J. 33, 1454–1466 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Kobayashi, H. et al. Cardiac magnetic resonance imaging with pharmacological stress perfusion and delayed enhancement in asymptomatic patients with systemic sclerosis. J. Rheumatol. 36, 106–112 (2009).

    Article  PubMed  Google Scholar 

  91. Vogel-Claussen J. et al. Right and left ventricular myocardial perfusion reserves correlate with right ventricular function and pulmonary hemodynamics in patients with pulmonary arterial hypertension. Radiology 258, 119–127 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Michelakis, E. D. et al. Long-term treatment with oral sildenafil is safe and improves functional capacity and hemodynamics in patients with pulmonary arterial hypertension. Circulation 108, 2066–2069 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Gan, C. T. et al. Right ventricular diastolic dysfunction and the acute effects of sildenafil in pulmonary hypertension patients. Chest 132, 11–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Chin, K. M. et al. Changes in right ventricular structure and function assessed using cardiac magnetic resonance imaging in bosentan-treated patients with pulmonary arterial hypertension. Am. J. Cardiol. 101, 1669–1672 (2008).

    Article  PubMed  Google Scholar 

  95. Allanore, Y. et al. Bosentan increases myocardial perfusion and function in systemic sclerosis: a magnetic resonance imaging and Tissue-Doppler echography study. J. Rheumatol. 33, 2464–2469 (2006).

    CAS  PubMed  Google Scholar 

  96. Champion, H. C., Michelakis, E. D. & Hassoun, P. M. Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation 120, 992–1007 (2009).

    Article  PubMed  Google Scholar 

  97. Garin, M. C., Highland, K. B., Silver, R. M. & Strange, C. Limitations to the 6-minute walk test in interstitial lung disease and pulmonary hypertension in scleroderma. J. Rheumatol. 36, 330–336 (2009).

    Article  PubMed  Google Scholar 

  98. Dimitroulas, T., Giannakoulas, G., Karvounis, H., Gatzoulis, M. A. & Settas, L. Natriuretic peptides in systemic sclerosis-related pulmonary arterial hypertension. Semin. Arthritis Rheum. 39, 278–284 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Drs George Giannakoulas and Vasilis Kamperidis for ultrasound images from their archives. T. Dimitroulas is supported by the Rheumatology Society of Northern Greece and Hellenic Society for Rheumatology.

Author information

Authors and Affiliations

Authors

Contributions

T. Dimitroulas was responsible for researching the data and writing the article. S. Mavrogeni was responsible for researching the data and writing the article and contributed to the discussion of content. G. D. Kitas contributed to the discussion of content and was responsible for reviewing the manuscript before submission.

Corresponding author

Correspondence to Sophie Mavrogeni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitroulas, T., Mavrogeni, S. & Kitas, G. Imaging modalities for the diagnosis of pulmonary hypertension in systemic sclerosis. Nat Rev Rheumatol 8, 203–213 (2012). https://doi.org/10.1038/nrrheum.2012.2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing