Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

RNA mis-splicing in disease

Key Points

  • The human transcriptome is the product of a coordinated series of transcriptional, co-transcriptional and post-transcriptional regulatory events.

  • RNA splicing is a key regulatory step in gene expression that allows a limited genome to express an impressive diversity of coding and non-coding RNAs.

  • RNA mis-splicing causes a large array of human diseases due to hereditary and somatic mutations.

  • Mis-splicing may result from mutations to RNA cis-regulatory elements, core spliceosomal components or trans-acting regulatory factors.

  • Mutations in some genes, such as lamin A (LMNA), cause multiple types of diseases, from muscular dystrophy to premature ageing syndromes.

  • A key small nuclear RNA (snRNA) component of the minor spliceosome functions as a stress-activated switch to control expression levels of genes containing minor introns.

  • Some splicing factors linked to diseases, such as amyotrophic lateral sclerosis, contain low-complexity regions with prion-like domains that are susceptible to abnormal aggregation.

  • Splicing modulatory therapeutic strategies have been developed that target a range of diseases, including muscular dystrophies and motor neuron diseases, and are currently being tested in clinical trials.

Abstract

The human transcriptome is composed of a vast RNA population that undergoes further diversification by splicing. Detecting specific splice sites in this large sequence pool is the responsibility of the major and minor spliceosomes in collaboration with numerous splicing factors. This complexity makes splicing susceptible to sequence polymorphisms and deleterious mutations. Indeed, RNA mis-splicing underlies a growing number of human diseases with substantial societal consequences. Here, we provide an overview of RNA splicing mechanisms followed by a discussion of disease-associated errors, with an emphasis on recently described mutations that have provided new insights into splicing regulation. We also discuss emerging strategies for splicing-modulating therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mis-splicing of a single gene results in different diseases.
Figure 2: Major and minor spliceosome mutations.
Figure 3: Co-transcriptional splicing factor recruitment and disease mutations.
Figure 4: Therapeutic strategies.

Similar content being viewed by others

References

  1. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  2. Kim, M. S. et al. A draft map of the human proteome. Nature 509, 575–581 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wilhelm, M. et al. Mass-spectrometry-based draft of the human proteome. Nature 509, 582–587 (2014).

    CAS  PubMed  Google Scholar 

  4. Treutlein, B., Gokce, O., Quake, S. R. & Sudhof, T. C. Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing. Proc. Natl Acad. Sci. USA 111, E1291–E1299 (2014). Long-read sequencing of full-length neurexin mRNAs from pre-frontal cortex is performed to determine the extent of alternative splicing and provide evidence for thousands of neurexin isoforms.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gerstein, M. B. et al. Comparative analysis of the transcriptome across distant species. Nature 512, 445–448 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    CAS  PubMed  Google Scholar 

  8. Singh, R. K. & Cooper, T. A. Pre-mRNA splicing in disease and therapeutics. Trends Mol. Med. 18, 472–482 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA 106, 9362–9367 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ashwal-Fluss, R. et al. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56, 55–66 (2014). Demonstrates that circRNAs are generated co-transcriptionally, that the circularization process competes with linear splicing and then MBNL functions as an auto-regulatory factor in circRNA biogenesis.

    CAS  PubMed  Google Scholar 

  11. Barry, G. et al. The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol. Psychiatry 19, 486–494 (2014).

    CAS  PubMed  Google Scholar 

  12. Sharp, P. A. Split genes and RNA splicing. Cell 77, 805–815 (1994).

    CAS  PubMed  Google Scholar 

  13. Dujardin, G. et al. How slow RNA polymerase II elongation favors alternative exon skipping. Mol. Cell 54, 683–690 (2014).

    CAS  PubMed  Google Scholar 

  14. Maquat, L. E. et al. Processing of human β-globin mRNA precursor to mRNA is defective in three patients with β+-thalassemia. Proc. Natl Acad. Sci. USA 77, 4287–4291 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Spritz, R. A. et al. Base substitution in an intervening sequence of a β+-thalassemic human globin gene. Proc. Natl Acad. Sci. USA 78, 2455–2459 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Busslinger, M., Moschonas, N. & Flavell, R. A. β+ thalassemia: aberrant splicing results from a single point mutation in an intron. Cell 27, 289–298 (1981).

    CAS  PubMed  Google Scholar 

  17. Takeshima, Y. et al. Mutation spectrum of the dystrophin gene in 442 Duchenne/Becker muscular dystrophy cases from one Japanese referral center. J. Hum. Genet. 55, 379–388 (2010).

    CAS  PubMed  Google Scholar 

  18. Fletcher, S. et al. Antisense suppression of donor splice site mutations in the dystrophin gene transcript. Mol. Genet. Genom. Med. 1, 162–173 (2013).

    CAS  Google Scholar 

  19. Chu, C. S., Trapnell, B. C., Curristin, S., Cutting, G. R. & Crystal, R. G. Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nat. Genet. 3, 151–156 (1993).

    CAS  PubMed  Google Scholar 

  20. Tsui, L. C. & Dorfman, R. The cystic fibrosis gene: a molecular genetic perspective. Cold Spring Harb. Perspect. Med. 3, a009472 (2013).

    PubMed  PubMed Central  Google Scholar 

  21. Niblock, M. & Gallo, J. M. Tau alternative splicing in familial and sporadic tauopathies. Biochem. Soc. Trans. 40, 677–680 (2012).

    CAS  PubMed  Google Scholar 

  22. Gruenbaum, Y. & Medalia, O. Lamins: the structure and protein complexes. Curr. Opin. Cell Biol. 32, 7–12 (2015).

    CAS  PubMed  Google Scholar 

  23. Luo, Y. B., Mastaglia, F. L. & Wilton, S. D. Normal and aberrant splicing of LMNA. J. Med. Genet. 51, 215–223 (2014).

    CAS  PubMed  Google Scholar 

  24. Muchir, A. et al. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum. Mol. Genet. 9, 1453–1459 (2000).

    CAS  PubMed  Google Scholar 

  25. Morel, C. F. et al. A LMNA splicing mutation in two sisters with severe Dunnigan-type familial partial lipodystrophy type 2. J. Clin. Endocrinol. Metab. 91, 2689–2695 (2006).

    CAS  PubMed  Google Scholar 

  26. Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423, 293–298 (2003).

    CAS  PubMed  Google Scholar 

  27. De Sandre-Giovannoli, A. et al. Lamin a truncation in Hutchinson–Gilford progeria. Science 300, 2055 (2003).

    CAS  PubMed  Google Scholar 

  28. Otomo, J. et al. Electrophysiological and histopathological characteristics of progressive atrioventricular block accompanied by familial dilated cardiomyopathy caused by a novel mutation of lamin A/C gene. J. Cardiovasc. Electrophysiol 16, 137–145 (2005).

    PubMed  Google Scholar 

  29. Liu, M. M. & Zack, D. J. Alternative splicing and retinal degeneration. Clin. Genet. 84, 142–149 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tanackovic, G. et al. PRPF mutations are associated with generalized defects in spliceosome formation and pre-mRNA splicing in patients with retinitis pigmentosa. Hum. Mol. Genet. 20, 2116–2130 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Linder, B. et al. Identification of a PRPF4 loss-of-function variant that abrogates U4/U6.U5 tri-snRNP integration and is associated with retinitis pigmentosa. PLoS ONE 9, e111754 (2014).

    PubMed  PubMed Central  Google Scholar 

  32. Vaclavik, V., Gaillard, M. C., Tiab, L., Schorderet, D. F. & Munier, F. L. Variable phenotypic expressivity in a Swiss family with autosomal dominant retinitis pigmentosa due to a T494M mutation in the PRPF3 gene. Mol. Vis. 16, 467–475 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Maubaret, C. G. et al. Autosomal dominant retinitis pigmentosa with intrafamilial variability and incomplete penetrance in two families carrying mutations in PRPF8. Invest. Ophthalmol. Vis. Sci. 52, 9304–9309 (2011).

    CAS  PubMed  Google Scholar 

  34. Venturini, G., Rose, A. M., Shah, A. Z., Bhattacharya, S. S. & Rivolta, C. CNOT3 is a modifier of PRPF31 mutations in retinitis pigmentosa with incomplete penetrance. PLoS Genet. 8, e1003040 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Comitato, A. et al. Mutations in splicing factor PRPF3, causing retinal degeneration, form detrimental aggregates in photoreceptor cells. Hum. Mol. Genet. 16, 1699–1707 (2007).

    CAS  PubMed  Google Scholar 

  36. Mozaffari-Jovin, S. et al. Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8. Science 341, 80–84 (2013).

    CAS  PubMed  Google Scholar 

  37. Chen, X. et al. PRPF4 mutations cause autosomal dominant retinitis pigmentosa. Hum. Mol. Genet. 23, 2926–2939 (2014).

    CAS  PubMed  Google Scholar 

  38. Kevany, B. M. & Palczewski, K. Phagocytosis of retinal rod and cone photoreceptors. Physiology (Bethesda) 25, 8–15 (2010).

    CAS  Google Scholar 

  39. Farkas, M. H. et al. Mutations in pre-mRNA processing factors 3, 8, and 31 cause dysfunction of the retinal pigment epithelium. Am. J. Pathol. 184, 2641–2652 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. David, C. J. & Manley, J. L. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev. 24, 2343–2364 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Adler, A. S. et al. An integrative analysis of colon cancer identifies an essential function for PRPF6 in tumor growth. Genes Dev. 28, 1068–1084 (2014). This study identifies the tri-snRNP complex protein PRPF6 as an oncogenic driver of colon cancer proliferation by promoting selective splicing of growth regulatory gene transcripts.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

    CAS  PubMed  Google Scholar 

  43. Kurtovic-Kozaric, A. et al. PRPF8 defects cause missplicing in myeloid malignancies. Leukemia 29, 126–136 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Yoshida, K. & Ogawa, S. Splicing factor mutations and cancer. Wiley Interdiscip. Rev. RNA 5, 445–459 (2014).

    CAS  PubMed  Google Scholar 

  45. Malcovati, L. et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood 126, 233–241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Shirai, C. L. et al. Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo. Cancer Cell 27, 631–643 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Okeyo-Owuor, T. et al. U2AF1 mutations alter sequence specificity of pre-mRNA binding and splicing. Leukemia 29, 909–917 (2015).

    CAS  PubMed  Google Scholar 

  48. Ilagan, J. O. et al. U2AF1 mutations alter splice site recognition in hematological malignancies. Genome Res. 25, 14–26 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, J. et al. Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. Proc. Natl Acad. Sci. USA 112, E4726–E4734 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim, E. et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell 27, 617–630 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Komeno, Y. et al. SRSF2 is essential for hematopoiesis, and its myelodysplastic syndrome-related mutations dysregulate alternative pre-mRNA splicing. Mol. Cell. Biol. 35, 3071–3082 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hsu, T. Y. et al. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 525, 384–388 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bonnal, S., Vigevani, L. & Valcarcel, J. The spliceosome as a target of novel antitumour drugs. Nat. Rev. Drug Discov. 11, 847–859 (2012).

    CAS  PubMed  Google Scholar 

  54. Abdel-Salam, G. M. et al. A homozygous mutation in RNU4ATAC as a cause of microcephalic osteodysplastic primordial dwarfism type I (MOPD I) with associated pigmentary disorder. Am. J. Med. Genet. A 155, 2885–2896 (2011).

    CAS  Google Scholar 

  55. Edery, P. et al. Association of TALS developmental disorder with defect in minor splicing component U4atac snRNA. Science 332, 240–243 (2011).

    CAS  PubMed  Google Scholar 

  56. He, H. et al. Mutations in U4atac snRNA, a component of the minor spliceosome, in the developmental disorder MOPD I. Science 332, 238–240 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jafarifar, F., Dietrich, R. C., Hiznay, J. M. & Padgett, R. A. Biochemical defects in minor spliceosome function in the developmental disorder MOPD I. RNA 20, 1078–1089 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Younis, I. et al. Minor introns are embedded molecular switches regulated by highly unstable U6atac snRNA. eLife 2, e00780 (2013). The authors propose that minor introns function as molecular switches which are regulated by U6atac stability, which is itself controlled by the stress-activated kinase p38 MAPK.

    PubMed  PubMed Central  Google Scholar 

  59. Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Konig, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    PubMed  PubMed Central  Google Scholar 

  62. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    CAS  PubMed  Google Scholar 

  63. Kwon, S. C. et al. The RNA-binding protein repertoire of embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1122–1130 (2013).

    CAS  PubMed  Google Scholar 

  64. Moore, M. J. et al. Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nat. Protoc. 9, 263–293 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Daneholt, B. Assembly and transport of a premessenger RNP particle. Proc. Natl Acad. Sci. USA 98, 7012–7017 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. King, O. D., Gitler, A. D. & Shorter, J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res. 1462, 61–80 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim, H. J. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467–473 (2013). Reports that hereditary mutations in the prion-like domains of HNRNPA1 and HNRNPA2B1 cause multisystem proteinopathy and ALS and drive the formation of cytoplasmic inclusions.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Han, T. W. et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149, 768–779 (2012).

    CAS  PubMed  Google Scholar 

  70. Marangi, G. & Traynor, B. J. Genetic causes of amyotrophic lateral sclerosis: new genetic analysis methodologies entailing new opportunities and challenges. Brain Res. 1607, 75–93 (2014).

    PubMed  PubMed Central  Google Scholar 

  71. Renton, A. E., Chio, A. & Traynor, B. J. State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci. 17, 17–23 (2014).

    CAS  PubMed  Google Scholar 

  72. Ling, S. C., Polymenidou, M. & Cleveland, D. W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Goodwin, M. & Swanson, M. S. RNA-binding protein misregulation in microsatellite expansion disorders. Adv. Exp. Med. Biol. 825, 353–388 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Prudencio, M. et al. Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat. Neurosci. 18, 1175–1182 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee, Y. B. et al. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep. 5, 1178–1186 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Buratti, E. & Baralle, F. E. TDP-43: gumming up neurons through protein–protein and protein–RNA interactions. Trends Biochem. Sci. 37, 237–247 (2012).

    CAS  PubMed  Google Scholar 

  77. Arnold, E. S. et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc. Natl Acad. Sci. USA 110, E736–E745 (2013). Demonstration that controlled expression of ALS-associated TDP-43 mutations in a mouse model causes splicing dysregulation of specific targets and progressive motor neuron loss in the absence of TDP-43 aggregation or nuclear depletion.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lagier-Tourenne, C. et al. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat. Neurosci. 15, 1488–1497 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Nakaya, T., Alexiou, P., Maragkakis, M., Chang, A. & Mourelatos, Z. FUS regulates genes coding for RNA-binding proteins in neurons by binding to their highly conserved introns. RNA 19, 498–509 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bai, B. et al. U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer's disease. Proc. Natl Acad. Sci. USA 110, 16562–16567 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, Y. I., Sanchez-Pulido, L., Haerty, W. & Ponting, C. P. RBFOX and PTBP1 proteins regulate the alternative splicing of micro-exons in human brain transcripts. Genome Res. 25, 1–13 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. Sibley, C. R. et al. Recursive splicing in long vertebrate genes. Nature 521, 371–375 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Duff, M. O. et al. Genome-wide identification of zero nucleotide recursive splicing in Drosophila. Nature 521, 376–379 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Polymenidou, M. et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 14, 459–468 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tollervey, J. R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 14, 452–458 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ling, J. P., Pletnikova, O., Troncoso, J. C. & Wong, P. C. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 349, 650–655 (2015). Shows that TDP-43 depletion results in splicing of non-conserved cryptic exons that are often located in distal regions of long introns and that loss of TDP-43-mediated cryptic exon splicing repression is a potential pathogenic factor in ALS and FTD.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Nelson, S. B. & Valakh, V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87, 684–698 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Irimia, M. et al. A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell 159, 1511–1523 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Gehman, L. T. et al. The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nat. Genet. 43, 706–711 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Martin, C. L. et al. Cytogenetic and molecular characterization of A2BP1/FOX1 as a candidate gene for autism. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144, 869–876 (2007).

    Google Scholar 

  92. Weyn-Vanhentenryck, S. M. et al. HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Rep. 6, 1139–1152 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kole, R., Krainer, A. R. & Altman, S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat. Rev. Drug Discov. 11, 125–140 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ruegg, U. T. Pharmacological prospects in the treatment of Duchenne muscular dystrophy. Curr. Opin. Neurol. 26, 577–584 (2013).

    CAS  PubMed  Google Scholar 

  95. Kole, R. & Krieg, A. M. Exon skipping therapy for Duchenne muscular dystrophy. Adv. Drug Deliv. Rev. 87, 104–107 (2015).

    CAS  PubMed  Google Scholar 

  96. Osorio, F. G. et al. Splicing-directed therapy in a new mouse model of human accelerated aging. Sci. Transl. Med. 3, 106ra107 (2011).

    PubMed  Google Scholar 

  97. Faravelli, I., Nizzardo, M., Comi, G. P. & Corti, S. Spinal muscular atrophy — recent therapeutic advances for an old challenge. Nat. Rev. Neurol. 11, 351–359 (2015).

    CAS  PubMed  Google Scholar 

  98. Li, D. K., Tisdale, S., Lotti, F. & Pellizzoni, L. SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease. Semin. Cell Dev. Biol. 32, 22–29 (2014).

    CAS  PubMed  Google Scholar 

  99. Cartegni, L., Hastings, M. L., Calarco, J. A., de Stanchina, E. & Krainer, A. R. Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am. J. Hum. Genet. 78, 63–77 (2006).

    CAS  PubMed  Google Scholar 

  100. Hua, Y., Vickers, T. A., Okunola, H. L., Bennett, C. F. & Krainer, A. R. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am. J. Hum. Genet. 82, 834–848 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hua, Y. et al. Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models. Genes Dev. 29, 288–297 (2015). Although SMA is a motor neuron disease, this study uses a combination of splice-switching and decoy oligonucleotides to provide evidence that disease is not specific to motor neurons in a mouse model of SMA.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Lopez Castel, A., Cleary, J. D. & Pearson, C. E. Repeat instability as the basis for human diseases and as a potential target for therapy. Nat. Rev. Mol. Cell Biol. 11, 165–170 (2010).

    PubMed  Google Scholar 

  103. Wang, E. T. et al. Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell 150, 710–724 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Charizanis, K. et al. Muscleblind-like 2-mediated alternative splicing in the developing brain and dysregulation in myotonic dystrophy. Neuron 75, 437–450 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, E. T. et al. Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins. Genome Res. 25, 858–871 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wheeler, T. M. et al. Reversal of RNA dominance by displacement of protein sequestered on triplet repeat RNA. Science 325, 336–339 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Leger, A. J. et al. Systemic delivery of a peptide-linked morpholino oligonucleotide neutralizes mutant RNA toxicity in a mouse model of myotonic dystrophy. Nucleic Acid. Ther. 23, 109–117 (2013).

    CAS  PubMed  Google Scholar 

  108. Wheeler, T. M. et al. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 488, 111–115 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kendall, G. C. et al. Dantrolene enhances antisense-mediated exon skipping in human and mouse models of Duchenne muscular dystrophy. Sci. Transl. Med. 4, 164ra160 (2012).

    PubMed  Google Scholar 

  110. Cherry, J. J. et al. Enhancement of SMN protein levels in a mouse model of spinal muscular atrophy using novel drug-like compounds. EMBO Mol. Med. 5, 1035–1050 (2013).

    CAS  PubMed Central  Google Scholar 

  111. Naryshkin, N. A. et al. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345, 688–693 (2014). A minigene splicing reporter combined with chemical screening and optimization were used to identify small molecule compounds that activate SMN2 exon 7 splicing and increase SMN levels.

    CAS  PubMed  Google Scholar 

  112. Palacino, J. et al. SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. Nat. Chem. Biol. 11, 511–517 (2015); erratum 11, 741 (2015).

    CAS  PubMed  Google Scholar 

  113. Childs-Disney, J. L. et al. Induction and reversal of myotonic dystrophy type 1 pre-mRNA splicing defects by small molecules. Nat. Commun. 4, 2044 (2013).

    PubMed  Google Scholar 

  114. Childs-Disney, J. L. et al. Structure of the myotonic dystrophy type 2 RNA and designed small molecules that reduce toxicity. ACS Chem. Biol. 9, 538–550 (2014).

    CAS  PubMed  Google Scholar 

  115. Warf, M. B., Nakamori, M., Matthys, C. M., Thornton, C. A. & Berglund, J. A. Pentamidine reverses the splicing defects associated with myotonic dystrophy. Proc. Natl Acad. Sci. USA 106, 18551–18556 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Hoskins, J. W. et al. Lomofungin and dilomofungin: inhibitors of MBNL1–CUG RNA binding with distinct cellular effects. Nucleic Acids Res. 42, 6591–6602 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Jahromi, A. H. et al. A novel CUGexp. MBNL1 inhibitor with therapeutic potential for myotonic dystrophy type 1. ACS Chem. Biol. 8, 1037–1043 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Niland, C. N., Merry, C. R. & Khalil, A. M. Emerging roles for long non-coding RNAs in cancer and neurological disorders. Front. Genet. 3, 25 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Yang, L., Froberg, J. E. & Lee, J. T. Long noncoding RNAs: fresh perspectives into the RNA world. Trends Biochem. Sci. 39, 35–43 (2014).

    PubMed  Google Scholar 

  120. Tilgner, H. et al. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res. 22, 1616–1625 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Gratten, J., Wray, N. R., Keller, M. C. & Visscher, P. M. Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nat. Neurosci. 17, 782–790 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    CAS  PubMed  Google Scholar 

  123. Conn, S. J. et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 160, 1125–1134 (2015).

    CAS  PubMed  Google Scholar 

  124. Xiong, H. Y. et al. The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 1254806 (2015). Comprehensive study showing the utility of a machine learning technique that scores sequence variants for splicing impact and reveals thousands of disease-associated mutations.

    PubMed  Google Scholar 

  125. Papasaikas, P., Tejedor, J. R., Vigevani, L. & Valcarcel, J. Functional splicing network reveals extensive regulatory potential of the core spliceosomal machinery. Mol. Cell 57, 7–22 (2015).

    CAS  PubMed  Google Scholar 

  126. Turunen, J. J., Niemela, E. H., Verma, B. & Frilander, M. J. The significant other: splicing by the minor spliceosome. Wiley Interdiscip. Rev. RNA 4, 61–76 (2013).

    CAS  PubMed  Google Scholar 

  127. Braunschweig, U. et al. Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res. 24, 1774–1786 (2014). Although intron retention is the most common form of splicing regulation in plants, this study uncovers widespread intron retention in mammals and proposes intron retention as a regulatory mechanism to control transcript levels by NMD and nuclear sequestration and turnover.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Ibrahim, E. C. et al. Weak definition of IKBKAP exon 20 leads to aberrant splicing in familial dysautonomia. Hum. Mutat. 28, 41–53 (2007).

    CAS  PubMed  Google Scholar 

  129. Muntoni, F., Torelli, S. & Ferlini, A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol. 2, 731–740 (2003).

    CAS  PubMed  Google Scholar 

  130. Disset, A. et al. An exon skipping-associated nonsense mutation in the dystrophin gene uncovers a complex interplay between multiple antagonistic splicing elements. Hum. Mol. Genet. 15, 999–1013 (2006).

    CAS  PubMed  Google Scholar 

  131. Samaranch, L. et al. PINK1-linked parkinsonism is associated with Lewy body pathology. Brain 133, 1128–1142 (2010).

    PubMed  Google Scholar 

  132. Iovino, M. et al. The novel MAPT mutation K298E: mechanisms of mutant tau toxicity, brain pathology and tau expression in induced fibroblast-derived neurons. Acta Neuropathol. 127, 283–295 (2014).

    CAS  PubMed  Google Scholar 

  133. Korvatska, O. et al. Altered splicing of ATP6AP2 causes X-linked parkinsonism with spasticity (XPDS). Hum. Mol. Genet. 22, 3259–3268 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Tanackovic, G. et al. A missense mutation in PRPF6 causes impairment of pre-mRNA splicing and autosomal-dominant retinitis pigmentosa. Am. J. Hum. Genet. 88, 643–649 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Cvackova, Z., Mateju, D. & Stanek, D. Retinitis pigmentosa mutations of SNRNP200 enhance cryptic splice-site recognition. Hum. Mutat. 35, 308–317 (2014).

    CAS  PubMed  Google Scholar 

  136. Lorson, C. L., Hahnen, E., Androphy, E. J. & Wirth, B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl Acad. Sci. USA 96, 6307–6311 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80, 155–165 (1995).

    CAS  PubMed  Google Scholar 

  138. Sun, S. et al. ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat. Commun. 6, 6171 (2015).

    CAS  PubMed  Google Scholar 

  139. Guo, W. et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat. Med. 18, 766–773 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Vieira, N. M. et al. A defect in the RNA-processing protein HNRPDL causes limb-girdle muscular dystrophy 1G (LGMD1G). Hum. Mol. Genet. 23, 4103–4110 (2014).

    CAS  PubMed  Google Scholar 

  141. Bartoletti-Stella, A. et al. Messenger RNA processing is altered in autosomal dominant leukodystrophy. Hum. Mol. Genet. 24, 2746–2756 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors regret that many important studies were not cited owing to space limitations. Work in the authors' laboratories is funded by grants to M.S.S. from the US National Institutes of Health (NIH AR046799, NS058901), the Muscular Dystrophy Association (MDA276063), the W.M. Keck Foundation (F013635) and the Marigold Foundation. M.M.S. is the recipient of an NIH pre-doctoral traineeship (NIAMS T32 AR7605-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice S. Swanson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Long non-coding RNAs

(lncRNAs). RNAs of >200 nucleotides in length that generally do not encode proteins.

Pseudogenes

Non-functional versions of genes that are generated either by duplication and mutation or by retrotransposition.

Splicing factors

Proteins that participate in splicing regulation but are not stable constituents of small nuclear ribonucleoprotein particles (snRNPs).

Single-nucleotide polymorphisms

(SNPs). Variations in individual nucleotides that are common in the human genome and can influence splicing regulation.

Nonsense-mediated decay

(NMD). A process of enhanced RNA turnover induced by a premature termination codon (PTC) which is designed to block the synthesis of truncated proteins and modulate the appearance of full-length proteins during development.

Penetrance

The percentage of individuals carrying a disease mutation who show clinical symptoms. Incomplete, or reduced, penetrance occurs when not all individuals with a particular genetic mutation develop the associated disease.

Expressivity

The degree to which a mutant gene is phenotypically expressed. Variable expressivity refers to the symptomatic range that is displayed by different individuals with the same mutation.

Core consensus sequences

Conserved RNA sequence motifs, including the 5′ and 3′ splice sites and the branch point region, which are required for spliceosome recruitment.

Branch point

(BP). A partially conserved sequence, generally <50 nucleotides upstream of the 3′ splice site (see Box 1), that reacts with the 5′ splice site during the first step of the splicing reaction.

Spliceosome

The large RNA–protein complex that catalyses splicing and is composed of multiple small nuclear RNAs (snRNAs) and many associated protein factors. Whereas the major and minor spliceosomes both contain U5, the other snRNA components differ (for the major spliceosome, U1, U2, U4, U6; for the minor spliceosome, U11, U12, U4atac, U6atac) (see Fig. 2).

Tri-snRNP

A preassembled complex of U4 snRNA hybridized to U6 (U4/U6 or U4atac/U6atac) that also contains U5 (U4/U6.U5) together with associated proteins (see Fig. 2).

Haploinsufficiency

A condition due to inactivating mutations in one copy of a gene when expression from the remaining copy is insufficient to produce an unaffected phenotype.

HITS-CLIP

(High-throughput sequencing of RNA isolated by crosslinking immunoprecipitation; also known as CLIP–seq). A technique to map the binding sites of splicing, and other, factors on target RNAs. Related techniques include photoactivatable-ribonucleoside-enhanced-CLIP (PAR-CLIP) and individual-nucleotide resolution CLIP (iCLIP).

Cryptic splice sites

Splice sites that are not normally recognized by the spliceosome but can be activated either by mutations in cis-acting elements or trans-acting factors.

Splicing regulatory elements

RNA sequence motifs in either exons or introns that modulate splicing primarily by binding trans-acting splicing regulatory factors.

Morpholino

An antisense oligomer with standard nucleic acid bases but instead of deoxyribose contains a six-member morpholine ring linked with phosphorodiamidate (PMO). PMOs function by steric blocking and vivo-morpholinos, composed of a morpholino oligomer covalently attached to an octa-guanidine dendrimer, are optimized for in vivo delivery.

Human transcriptome

All of the RNAs transcribed from the human genome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scotti, M., Swanson, M. RNA mis-splicing in disease. Nat Rev Genet 17, 19–32 (2016). https://doi.org/10.1038/nrg.2015.3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2015.3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing