Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nuclear mRNA decay: regulatory networks that control gene expression

Abstract

Proper regulation of mRNA production in the nucleus is critical for the maintenance of cellular homoeostasis during adaptation to internal and environmental cues. Over the past 25 years, it has become clear that the nuclear machineries governing gene transcription, pre-mRNA processing, pre-mRNA and mRNA decay, and mRNA export to the cytoplasm are inextricably linked to control the quality and quantity of mRNAs available for translation. More recently, an ever-expanding diversity of new mechanisms by which nuclear RNA decay factors finely tune the expression of protein-encoding genes have been uncovered. Here, we review the current understanding of how mammalian cells shape their protein-encoding potential by regulating the decay of pre-mRNAs and mRNAs in the nucleus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nuclear decay of pervasive RNAs by XRN2 or by the RNA exosome.
Fig. 2: Nuclear metabolism of pre-mRNAs, including the generation of abnormal mRNAs.
Fig. 3: Fate of nuclear mRNAs.
Fig. 4: Models for the nuclear decay of abnormal pre-mRNAs that have undergone transcription termination and release from chromatin or that remain chromatin-associated.
Fig. 5: Models for how epigenetic marks and their readers influence nuclear RNA decay.
Fig. 6: Models for how alternative pre-mRNA processing influences nuclear RNA decay.
Fig. 7: Models for how RNA-binding proteins and cis-acting RNA elements influence the recruitment of, or the escape from, decay factors.

Similar content being viewed by others

References

  1. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Rambout, X., Dequiedt, F. & Maquat, L. E. Beyond transcription: roles of transcription factors in pre-mRNA splicing. Chem. Rev. 118, 4339–4364 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Mitschka, S. & Mayr, C. Context-specific regulation and function of mRNA alternative polyadenylation. Nat. Rev. Mol. Cell Biol. 23, 779–796 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wolin, S. L. & Maquat, L. E. Cellular RNA surveillance in health and disease. Science 366, 822–827 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kilchert, C. RNA exosomes and their cofactors. Methods Mol. Biol. 2062, 215–235 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Schmid, M. & Jensen, T. H. Controlling nuclear RNA levels. Nat. Rev. Genet. 19, 518–529 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Kilchert, C., Wittmann, S. & Vasiljeva, L. The regulation and functions of the nuclear RNA exosome complex. Nat. Rev. Mol. Cell Biol. 17, 227–239 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Agostini, F., Zagalak, J., Attig, J., Ule, J. & Luscombe, N. M. Intergenic RNA mainly derives from nascent transcripts of known genes. Genome Biol. 22, 136 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Collins, J. W. et al. ZCCHC8 is required for the degradation of pervasive transcripts originating from multiple genomic regulatory features. Preprint at bioRxiv https://doi.org/10.1101/2021.01.29.428898 (2021).

  10. Wu, G. et al. A two-layered targeting mechanism underlies nuclear RNA sorting by the human exosome. Cell Rep. 30, 2387–2401.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Wu, M. et al. The RNA exosome shapes the expression of key protein-coding genes. Nucleic Acids Res. 48, 8509–8528 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Villa, T. & Porrua, O. Pervasive transcription: a controlled risk. FEBS J. 290, 3723–3736 (2022).

    Article  PubMed  Google Scholar 

  13. Eaton, J. D. & West, S. Termination of transcription by RNA polymerase II: BOOM! Trends Genet. 36, 664–675 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Zhou, H. et al. Rixosomal RNA degradation contributes to silencing of Polycomb target genes. Nature 604, 167–174 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Andersen, P. R. et al. The human cap-binding complex is functionally connected to the nuclear RNA exosome. Nat. Struct. Mol. Biol. 20, 1367–1376 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meola, N. et al. Identification of a nuclear exosome decay pathway for processed transcripts. Mol. Cell 64, 520–533 (2016). This study identifies the core constituents and the canonical RNA targets of the RNA exosome adaptor PAXT in human cells.

    Article  CAS  PubMed  Google Scholar 

  17. Winczura, K. et al. Characterizing ZC3H18, a multi-domain protein at the interface of RNA production and destruction decisions. Cell Rep. 22, 44–58 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rouvière, J. O. et al. ARS2 instructs early transcription termination-coupled RNA decay by recruiting ZC3H4 to nascent transcripts. Mol. Cell 22, 2240–2257.e6 (2023).

    Article  Google Scholar 

  19. Foucher, A. E. et al. Structural analysis of Red1 as a conserved scaffold of the RNA-targeting MTREC/PAXT complex. Nat. Commun. 13, 4969 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Polák, P. et al. Dual agonistic and antagonistic roles of ZC3H18 provide for co-activation of distinct nuclear RNA decay pathways. Cell Rep. 42, 113325 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dubiez, E. et al. Structural basis for competitive binding of productive and degradative co-transcriptional effectors to the nuclear cap-binding complex. Cell Rep. 43, 113639 (2024).

    Article  CAS  PubMed  Google Scholar 

  22. Lubas, M. et al. Interaction profiling identifies the human nuclear exosome targeting complex. Mol. Cell 43, 624–637 (2011). This study defines the constituents and the canonical RNA targets of the RNA exosome adaptors NEXT and mTRAMP in human cells.

    Article  CAS  PubMed  Google Scholar 

  23. Lubas, M. et al. The human nuclear exosome targeting complex is loaded onto newly synthesized RNA to direct early ribonucleolysis. Cell Rep. 10, 178–192 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Lykke-Andersen, S. et al. Integrator is a genome-wide attenuator of non-productive transcription. Mol. Cell 81, 514–529.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Ogami, K. et al. An Mtr4/ZFC3H1 complex facilitates turnover of unstable nuclear RNAs to prevent their cytoplasmic transport and global translational repression. Genes Dev. 31, 1257–1271 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Insco, M. L. et al. Oncogenic CDK13 mutations impede nuclear RNA surveillance. Science 380, eabn7625 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bresson, S. M., Hunter, O. V., Hunter, A. C. & Conrad, N. K. Canonical poly(A) polymerase activity promotes the decay of a wide variety of mammalian nuclear RNAs. PLoS Genet. 11, e1005610 (2015). This study uses human cells to identify those nuclear RNAs that are degraded by the PPD pathway and how they are degraded.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Beaulieu, Y. B., Kleinman, C. L., Landry-Voyer, A. M., Majewski, J. & Bachand, F. Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein nuclear 1. PLoS Genet. 8, e1003078 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Silla, T. et al. The human ZC3H3 and RBM26/27 proteins are critical for PAXT-mediated nuclear RNA decay. Nucleic Acids Res. 48, 2518–2530 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hurt, J. A. et al. A conserved CCCH-type zinc finger protein regulates mRNA nuclear adenylation and export. J. Cell Biol. 185, 265–277 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wagner, E. J., Tong, L. & Adelman, K. Integrator is a global promoter-proximal termination complex. Mol. Cell 83, 416–427 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Estell, C. et al. A restrictor complex of ZC3H4, WDR82, and ARS2 integrates with PNUTS to control unproductive transcription. Mol. Cell 83, 2222–2239.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Rambout, X. & Maquat, L. E. The nuclear cap-binding complex as choreographer of gene transcription and pre-mRNA processing. Genes Dev. 34, 1113–1127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rambout, X. et al. PGC-1α senses the CBC of pre-mRNA to dictate the fate of promoter-proximally paused RNAPII. Mol. Cell 83, 186–202.e11 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rambout, X. & Maquat, L. E. NCBP3: a multifaceted adaptive regulator of gene expression. Trends Biochem. Sci. 46, 87–96 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Klama, S. et al. A guard protein mediated quality control mechanism monitors 5′-capping of pre-mRNAs. Nucleic Acids Res. 50, 11301–11314 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiao, X., Chang, J. H., Kilic, T., Tong, L. & Kiledjian, M. A mammalian pre-mRNA 5′ end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing. Mol. Cell 50, 104–115 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lenasi, T., Peterlin, B. M. & Barboric, M. Cap-binding protein complex links pre-mRNA capping to transcription elongation and alternative splicing through positive transcription elongation factor b (P-TEFb). J. Biol. Chem. 286, 22758–22768 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stein, C. B. et al. Integrator endonuclease drives promoter-proximal termination at all RNA polymerase II-transcribed loci. Mol. Cell 82, 4232–42425.e11 (2022). This paper provides, to our knowledge, the first use of acute depletion of INTS11 in mouse cells to clarify how the different modules of Integrator impact gene expression in seemingly antagonistic manners.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu, S. et al. INTAC endonuclease and phosphatase modules differentially regulate transcription by RNA polymerase II. Mol. Cell 83, 1588–1604.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Beckedorff, F. et al. The human Integrator complex facilitates transcriptional elongation by endonucleolytic cleavage of nascent transcripts. Cell Rep. 32, 107917 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gardini, A. et al. Integrator regulates transcriptional initiation and pause release following activation. Mol. Cell 56, 128–139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fan, Z. et al. CDK13 cooperates with CDK12 to control global RNA polymerase II processivity. Sci. Adv. 6, eaaz5041 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kamieniarz-Gdula, K. & Proudfoot, N. J. Transcriptional control by premature termination: a forgotten mechanism. Trends Genet. 35, 553–564 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. So, B. R. et al. A complex of U1 snRNP with cleavage and polyadenylation factors controls telescripting, regulating mRNA transcription in human cells. Mol. Cell 76, 590–599.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chiu, A. C. et al. Transcriptional pause sites delineate stable nucleosome-associated premature polyadenylation suppressed by U1 snRNP. Mol. Cell 69, 648–663.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nesic, D. & Maquat, L. E. Upstream introns influence the efficiency of final intron removal and RNA 3′-end formation. Genes Dev. 8, 363–375 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Nesic, D., Cheng, J. & Maquat, L. E. Sequences within the last intron function in RNA 3′-end formation in cultured cells. Mol. Cell Biol. 13, 3359–3369 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Reimer, K. A., Mimoso, C. A., Adelman, K. & Neugebauer, K. M. Co-transcriptional splicing regulates 3′ end cleavage during mammalian erythropoiesis. Mol. Cell 81, 998–1012.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Drexler, H. L., Choquet, K. & Churchman, L. S. Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores. Mol. Cell 77, 985–998.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Sousa-Luís, R. et al. POINT technology illuminates the processing of polymerase-associated intact nascent transcripts. Mol. Cell 81, 1935–1950.e6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Braunschweig, U. et al. Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res. 24, 1774–1786 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Naro, C. et al. An orchestrated intron retention program in meiosis controls timely usage of transcripts during germ cell differentiation. Dev. Cell 41, 82–93.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rogalska, M. E., Vivori, C. & Valcárcel, J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat. Rev. Genet. 24, 251–269 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Jenal, M. et al. The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell 149, 538–553 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Zhu, Y. et al. Molecular mechanisms for CFIm-mediated regulation of mRNA alternative polyadenylation. Mol. Cell 69, 62–74.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Boutz, P. L., Bhutkar, A. & Sharp, P. A. Detained introns are a novel, widespread class of post-transcriptionally spliced introns. Genes Dev. 29, 63–80 (2015). This paper provides, to our knowledge, the first characterization of detained-intron pre-mRNAs and how members of this class of immature mRNAs can be rapidly spliced post-transcriptionally in response to an external stimulus.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gordon, J. M., Phizicky, D. V. & Neugebauer, K. M. Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision. Curr. Opin. Genet. Dev. 67, 67–76 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Parra, M. et al. An important class of intron retention events in human erythroblasts is regulated by cryptic exons proposed to function as splicing decoys. RNA 24, 1255–1265 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tan, Z. W. et al. O-GlcNAc regulates gene expression by controlling detained intron splicing. Nucleic Acids Res. 48, 5656–5669 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tang, P. et al. Alternative polyadenylation by sequential activation of distal and proximal polyA sites. Nat. Struct. Mol. Biol. 29, 21–31 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Sfaxi, R. et al. Post-transcriptional polyadenylation site cleavage maintains 3′-end processing upon DNA damage. EMBO J. 42, e112358 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Prasanth, K. V. et al. Regulating gene expression through RNA nuclear retention. Cell 123, 249–263 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Rosa-Mercado, N. A. & Steitz, J. A. Who let the DoGs out? — biogenesis of stress-induced readthrough transcripts. Trends Biochem. Sci. 47, 206–217 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Hadar, S., Meller, A., Saida, N. & Shalgi, R. Stress-induced transcriptional readthrough into neighboring genes is linked to intron retention. iScience 25, 105543 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Iwakiri, J. et al. Remarkable improvement in detection of readthrough downstream-of-gene transcripts by semi-extractable RNA-sequencing. RNA 29, 170–177 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Viphakone, N. et al. Co-transcriptional loading of RNA export factors shapes the human transcriptome. Mol. Cell 75, 310–323.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shi, M. et al. ALYREF mainly binds to the 5′ and the 3′ regions of the mRNA in vivo. Nucleic Acids Res. 45, 9640–9653 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Morris, K. J. & Corbett, A. H. The polyadenosine RNA-binding protein ZC3H14 interacts with the THO complex and coordinately regulates the processing of neuronal transcripts. Nucleic Acids Res. 46, 6561–6575 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pacheco-Fiallos, B. et al. mRNA recognition and packaging by the human transcription-export complex. Nature 616, 828–835 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee, E. S., Akef, A., Mahadevan, K. & Palazzo, A. F. The consensus 5′ splice site motif inhibits mRNA nuclear export. PLoS ONE 10, e0122743 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lee, E. S. et al. ZFC3H1 and U1-70K promote the nuclear retention of mRNAs with 5′ splice site motifs within nuclear speckles. RNA 28, 878–894 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Palazzo, A. F. & Lee, E. S. Sequence determinants for nuclear retention and cytoplasmic export of mRNAs and lncRNAs. Front. Genet. 9, 440 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, Y. et al. ZFC3H1 prevents RNA trafficking into nuclear speckles through condensation. Nucleic Acids Res. 49, 10630–10643 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Barutcu, A. R. et al. Systematic mapping of nuclear domain-associated transcripts reveals speckles and lamina as hubs of functionally distinct retained introns. Mol. Cell 82, 1035–1052.e9 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Wegener, M. & Müller-McNicoll, M. Nuclear retention of mRNAs — quality control, gene regulation and human disease. Semin. Cell Dev. Biol. 79, 131–142 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Meng, D. et al. A molecular brake that modulates spliceosome pausing at detained introns contributes to neurodegeneration. Protein Cell 14, 318–336 (2023).

    PubMed  Google Scholar 

  78. Kwiatek, L., Landry-Voyer, A. M., Latour, M., Yague-Sanz, C. & Bachand, F. PABPN1 prevents the nuclear export of an unspliced RNA with a constitutive transport element and controls human gene expression via intron retention. RNA 29, 644–662 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Kelly, S. M. et al. A conserved role for the zinc finger polyadenosine RNA binding protein, ZC3H14, in control of poly(A) tail length. RNA 20, 681–688 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bresson, S. M. & Conrad, N. K. The human nuclear poly(A)-binding protein promotes RNA hyperadenylation and decay. PLoS Genet. 9, e1003893 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Silla, T., Karadoulama, E., Mąkosa, D., Lubas, M. & Jensen, T. H. The RNA exosome adaptor ZFC3H1 functionally competes with nuclear export activity to retain target transcripts. Cell Rep. 23, 2199–2210 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Onderak, A. M. & Anderson, J. T. Loss of the RNA helicase SKIV2L2 impairs mitotic progression and replication-dependent histone mRNA turnover in murine cell lines. RNA 23, 910–926 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cevher, M. A. et al. Nuclear deadenylation/polyadenylation factors regulate 3′ processing in response to DNA damage. EMBO J. 29, 1674–1687 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kufel, J., Bousquet-Antonelli, C., Beggs, J. D. & Tollervey, D. Nuclear pre-mRNA decapping and 5′ degradation in yeast require the Lsm2-8p complex. Mol. Cell Biol. 24, 9646–9657 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mattout, A. et al. LSM2-8 and XRN-2 contribute to the silencing of H3K27me3-marked genes through targeted RNA decay. Nat. Cell Biol. 22, 579–590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Davidson, L. et al. Rapid depletion of DIS3, EXOSC10, or XRN2 reveals the immediate impact of exoribonucleolysis on nuclear RNA metabolism and transcriptional control. Cell Rep. 26, 2779–2791.e5 (2019). This study defines the direct RNA targets of XRN2 and the catalytic subunits of the nuclear RNA exosome using a rapid protein-depletion approach, clarifying the contributions of each to the various decay pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Henriques, T. et al. Stable pausing by RNA polymerase II provides an opportunity to target and integrate regulatory signals. Mol. Cell 52, 517–528 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, J. et al. NRDE2 negatively regulates exosome functions by inhibiting MTR4 recruitment and exosome interaction. Genes Dev. 33, 536–549 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rudzka, M. et al. Functional nuclear retention of pre-mRNA involving Cajal bodies during meiotic prophase in European larch (Larix decidua). Plant Cell 34, 2404–2423 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Tudek, A. et al. A nuclear export block triggers the decay of newly synthesized polyadenylated RNA. Cell Rep. 24, 2457–2467.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fan, J. et al. mRNAs are sorted for export or degradation before passing through nuclear speckles. Nucleic Acids Res. 46, 8404–8416 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fan, J. et al. Exosome cofactor hMTR4 competes with export adaptor ALYREF to ensure balanced nuclear RNA pools for degradation and export. EMBO J. 36, 2870–2886 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fasken, M. B. & Corbett, A. H. Links between mRNA splicing, mRNA quality control, and intellectual disability. RNA Dis. 3, e1448 (2016).

    PubMed  PubMed Central  Google Scholar 

  94. Brannan, K. et al. mRNA decapping factors and the exonuclease XRN2 function in widespread premature termination of RNA polymerase II transcription. Mol. Cell 46, 311–324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cortazar, M. A. et al. XRN2 substrate mapping identifies torpedo loading sites and extensive premature termination of RNA pol II transcription. Genes Dev. 36, 1062–1078 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Eaton, J. D. et al. XRN2 accelerates termination by RNA polymerase II, which is underpinned by CPSF73 activity. Genes Dev. 32, 127–139 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Henriques, T. et al. Widespread transcriptional pausing and elongation control at enhancers. Genes Dev. 32, 26–41 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Elrod, N. D. et al. The Integrator complex attenuates promoter-proximal transcription at protein-coding genes. Mol. Cell 76, 738–752.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Davidson, L., Kerr, A. & West, S. Co-transcriptional degradation of aberrant pre-mRNA by XRN2. EMBO J. 31, 2566–2578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yap, K., Lim, Z. Q., Khandelia, P., Friedman, B. & Makeyev, E. V. Coordinated regulation of neuronal mRNA steady-state levels through developmentally controlled intron retention. Genes Dev. 26, 1209–1223 (2012). This pioneering study characterizes how mouse cells modulate intron retention to control the expression of specific genes in distinct stages of differentiation and how detained-intron pre-mRNAs are degraded in the nucleus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lemieux, C. et al. A pre-mRNA degradation pathway that selectively targets intron-containing genes requires the nuclear poly(A)-binding protein. Mol. Cell 44, 108–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Hackmann, A. et al. Quality control of spliced mRNAs requires the shuttling SR proteins Gbp2 and Hrb1. Nat. Commun. 5, 3123 (2014).

    Article  PubMed  Google Scholar 

  103. Rougemaille, M. et al. Dissecting mechanisms of nuclear mRNA surveillance in THO/sub2 complex mutants. EMBO J. 26, 2317–2326 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fish, L. et al. Nuclear TARBP2 drives oncogenic dysregulation of RNA splicing and decay. Mol. Cell 75, 967–981.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rajanala, K. & Nandicoori, V. K. Localization of nucleoporin TPR to the nuclear pore complex is essential for TPR mediated regulation of the export of unspliced RNA. PLoS ONE 7, e29921 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Galy, V. et al. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116, 63–73 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Lee, E. S. et al. TPR is required for the efficient nuclear export of mRNAs and lncRNAs from short and intron-poor genes. Nucleic Acids Res. 48, 11645–11663 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bokhari, A. et al. Targeting nonsense-mediated mRNA decay in colorectal cancers with microsatellite instability. Oncogenesis 7, 70 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kurosaki, T., Popp, M. W. & Maquat, L. E. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat. Rev. Mol. Cell Biol. 20, 406–420 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wagschal, A. et al. Microprocessor, SETX, XRN2, and RRP6 co-operate to induce premature termination of transcription by RNAPII. Cell 150, 1147–1157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. West, S., Gromak, N. & Proudfoot, N. J. Human 5′–>3′ exonuclease XRN2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432, 522–525 (2004). This study characterizes the torpedo model in XRN2-mediated termination of transcription.

    Article  CAS  PubMed  Google Scholar 

  112. Henfrey, C., Murphy, S. & Tellier, M. Regulation of mature mRNA levels by RNA processing efficiency. NAR Genom. Bioinform. 5, lqad059 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Maity, A., Chaudhuri, A. & Das, B. DRN and TRAMP degrade specific and overlapping aberrant mRNAs formed at various stages of mRNP biogenesis in Saccharomyces cerevisiae. FEMS Yeast Res. 16, fow088 (2016).

    Article  PubMed  Google Scholar 

  114. Shcherbik, N., Wang, M., Lapik, Y. R., Srivastava, L. & Pestov, D. G. Polyadenylation and degradation of incomplete RNA polymerase I transcripts in mammalian cells. EMBO Rep. 11, 106–111 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. West, S., Gromak, N., Norbury, C. J. & Proudfoot, N. J. Adenylation and exosome-mediated degradation of cotranscriptionally cleaved pre-messenger RNA in human cells. Mol. Cell 21, 437–443 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Doamekpor, S. K., Sharma, S., Kiledjian, M. & Tong, L. Recent insights into noncanonical 5′ capping and decapping of RNA. J. Biol. Chem. 298, 102171 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kim, J. J. & Kingston, R. E. Context-specific Polycomb mechanisms in development. Nat. Rev. Genet. 23, 680–695 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Garland, W. et al. A functional link between nuclear RNA decay and transcriptional control mediated by the Polycomb repressive complex 2. Cell Rep. 29, 1800–1811.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, H. et al. H3K4me3 regulates RNA polymerase II promoter-proximal pause-release. Nature 615, 339–348 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Xu, W. et al. Dynamic control of chromatin-associated m(6)A methylation regulates nascent RNA synthesis. Mol. Cell 82, 1156–1168.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tchasovnikarova, I. A. et al. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells. Science 348, 1481–1485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fukuda, K. & Shinkai, Y. SETDB1-mediated silencing of retroelements. Viruses 12, 596 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tchasovnikarova, I. A. et al. Hyperactivation of HUSH complex function by Charcot-Marie-Tooth disease mutation in MORC2. Nat. Genet. 49, 1035–1044 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Robbez-Masson, L. et al. The HUSH complex cooperates with TRIM28 to repress young retrotransposons and new genes. Genome Res. 28, 836–845 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Garland, W. et al. Chromatin modifier HUSH co-operates with RNA decay factor NEXT to restrict transposable element expression. Mol. Cell 82, 1691–1707.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Matkovic, R. et al. TASOR epigenetic repressor cooperates with a CNOT1 RNA degradation pathway to repress HIV. Nat. Commun. 13, 66 (2022). This paper provides, to our knowledge, the first report of a direct connection between epigenetic regulators and nuclear RNA decay pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Azzouz, N., Panasenko, O. O., Colau, G. & Collart, M. A. The CCR4-NOT complex physically and functionally interacts with TRAMP and the nuclear exosome. PLoS ONE 4, e6760 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kordyukova, M. et al. Nuclear Ccr4-Not mediates the degradation of telomeric and transposon transcripts at chromatin in the Drosophila germline. Nucleic Acids Res. 48, 141–156 (2020).

    CAS  PubMed  Google Scholar 

  129. Cho, H. et al. Transcriptional coactivator PGC-1α contains a novel CBP80-binding motif that orchestrates efficient target gene expression. Genes Dev. 32, 555–567 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Salatino, S., Kupr, B., Baresic, M., van Nimwegen, E. & Handschin, C. The genomic context and corecruitment of SP1 affect ERRα coactivation by PGC-1α in muscle cells. Mol. Endocrinol. 30, 809–825 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Baresic, M., Salatino, S., Kupr, B., van Nimwegen, E. & Handschin, C. Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1alpha in the regulation of the hypoxic gene program. Mol. Cell Biol. 34, 2996–3012 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  132. de Nadal, E., Ammerer, G. & Posas, F. Controlling gene expression in response to stress. Nat. Rev. Genet. 12, 833–845 (2011).

    Article  PubMed  Google Scholar 

  133. Cugusi, S. et al. Heat shock induces premature transcript termination and reconfigures the human transcriptome. Mol. Cell 82, 1573–1588.e10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bergeron, D., Pal, G., Beaulieu, Y. B., Chabot, B. & Bachand, F. Regulated intron retention and nuclear pre-mRNA decay contribute to PABPN1 autoregulation. Mol. Cell Biol. 35, 2503–2517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Goodarzi, H. et al. Metastasis-suppressor transcript destabilization through TARBP2 binding of mRNA hairpins. Nature 513, 256–260 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Braun, C. J. et al. Coordinated splicing of regulatory detained introns within oncogenic transcripts creates an exploitable vulnerability in malignant glioma. Cancer Cell 32, 411–426.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Koh, C. M. et al. MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature 523, 96–100 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Fong, J. Y. et al. Therapeutic targeting of RNA splicing catalysis through inhibition of protein arginine methylation. Cancer Cell 36, 194–209.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Maron, M. I. et al. Type I and II PRMTs inversely regulate post-transcriptional intron detention through Sm and CHTOP methylation. eLife 11, e72867 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Takahashi, A. et al. The CCR4-NOT complex maintains liver homeostasis through mRNA deadenylation. Life Sci. Alliance 3, e201900494 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Singhania, R. et al. Nuclear poly(A) tail size is regulated by Cnot1 during the serum response. Preprint at bioRxiv https://doi.org/10.1101/773432 (2019).

  142. Collart, M. A. The Ccr4-Not complex is a key regulator of eukaryotic gene expression. Wiley Interdiscip. Rev. RNA 7, 438–454 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen, H. M., Futcher, B. & Leatherwood, J. The fission yeast RNA binding protein Mmi1 regulates meiotic genes by controlling intron specific splicing and polyadenylation coupled RNA turnover. PLoS ONE 6, e26804 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhou, Y. et al. The fission yeast MTREC complex targets CUTs and unspliced pre-mRNAs to the nuclear exosome. Nat. Commun. 6, 7050 (2015).

    Article  PubMed  Google Scholar 

  145. Shichino, Y., Otsubo, Y., Kimori, Y., Yamamoto, M. & Yamashita, A. YTH-RNA-binding protein prevents deleterious expression of meiotic proteins by tethering their mRNAs to nuclear foci. eLife 7, e32155 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Martín Caballero, L. et al. The inner nuclear membrane protein Lem2 coordinates RNA degradation at the nuclear periphery. Nat. Struct. Mol. Biol. 29, 910–921 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Lee, T. A. et al. The nucleolus is the site for inflammatory RNA decay during infection. Nat. Commun. 13, 5203 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cheng, Y. et al. N6-Methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation. Cancer Cell 39, 958–972.e8 (2021). This paper provides, to our knowledge, the first report of how gene expression can be augmented by the sequestration of the encoded mRNAs into nuclear condensates, other than nuclear speckles, and away from the nuclear RNA exosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dai, X. X. et al. PABPN1 functions as a hub in the assembly of nuclear poly(A) domains that are essential for mouse oocyte development. Sci. Adv. 8, eabn9016 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Roundtree, I. A. et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. eLife 6, e31311 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Lee, E. S. et al. N-6-Methyladenosine (m6A) promotes the nuclear retention of mRNAs with intact 5′ splice site motifs. Preprint at bioRxiv https://doi.org/10.1101/2023.06.20.545713 (2023).

  152. Yang, X. et al. 5-Methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res. 27, 606–625 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Quinones-Valdez, G. et al. Regulation of RNA editing by RNA-binding proteins in human cells. Commun. Biol. 2, 19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Li, Y. et al. Nicotine-induced ILF2 facilitates nuclear mRNA export of pluripotency factors to promote stemness and chemoresistance in human esophageal cancer. Cancer Res. 81, 3525–3538 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Li, Y. et al. An intron with a constitutive transport element is retained in a Tap messenger RNA. Nature 443, 234–237 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Mure, F. et al. The splicing factor SRSF3 is functionally connected to the nuclear RNA exosome for intronless mRNA decay. Sci. Rep. 8, 12901 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Ruiz, J. C., Hunter, O. V. & Conrad, N. K. Kaposi’s sarcoma-associated herpesvirus ORF57 protein protects viral transcripts from specific nuclear RNA decay pathways by preventing hMTR4 recruitment. PLoS Pathog. 15, e1007596 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tycowski, K. T., Shu, M. D. & Steitz, J. A. Myriad triple-helix-forming structures in the transposable element RNAs of plants and fungi. Cell Rep. 15, 1266–1276 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhao, Y. et al. Enhancer RNA promotes resistance to radiotherapy in bone-metastatic prostate cancer by m(6)A modification. Theranostics 13, 596–610 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Gockert, M. et al. Rapid factor depletion highlights intricacies of nucleoplasmic RNA degradation. Nucleic Acids Res. 50, 1583–1600 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Fujiwara, N. et al. MPP6 stimulates both RRP6 and DIS3 to degrade a specified subset of MTR4-sensitive substrates in the human nucleus. Nucleic Acids Res. 50, 8779–8806 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tatomer, D. C. et al. The Integrator complex cleaves nascent mRNAs to attenuate transcription. Genes Dev. 33, 1525–1538 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wada, T. & Becskei, A. Impact of methods on the measurement of mRNA turnover. Int. J. Mol. Sci. 18, 2723 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Wagner and P. Boutz for the critical comments on the manuscript. X.R. was supported by an American Heart Association Career Development Award (854100) and National Institutes of Health (NIH) R21 AG075368. This work was additionally supported by NIH R37 GM74593 and NIH R01 GM059614 (now NIH R35 GM149268) to L.E.M.

Author information

Authors and Affiliations

Authors

Contributions

X.R. researched literature for the article. X.R. and L.E.M. contributed to the discussion of the content, wrote the manuscript, and edited and/or reviewed the manuscript before submission.

Corresponding authors

Correspondence to Xavier Rambout or Lynne E. Maquat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Anita Corbett, who co-reviewed with Milo Fasken; François Bachand; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cajal bodies

Membraneless nuclear condensates, associated with the nucleolus, that have been implicated in the maturation of small nuclear ribonucleoproteins (snRNPs) and small nucleolar RNPs (snoRNPs), and telomerase assembly and trafficking.

Cap-binding complex

(CBC). Heterodimer of cap-binding proteins CBP20 and CBP80 acquired co-transcriptionally during promoter-proximal pausing of RNAPII. The CBC positively influences gene transcription, pre-mRNA processing, nuclear mRNA export, pioneer round(s) of translation and nonsense-mediated decay.

Cleavage and polyadenylation (CPA) complex

Modular multi-protein complex that recognizes polyadenylation signals and adjacent sequences in nascent RNAs to mediate their co-transcriptional cleavage and polyadenylation.

Enhancer RNA

Short unstable non-coding nuclear RNA that cooperates with distant promoters to activate gene transcription by, for example, promoting chromatin looping and formation of RNA condensates.

Exon–junction complexes

(EJCs). Heterogenous group of proteins deposited upstream of exon–exon junctions during pre-mRNA splicing that regulates multiple aspects of mRNA metabolism, including nuclear export, translation and nonsense-mediated decay.

Integrator

Metazoan-specific modular multi-protein complex that terminates pervasive RNA polymerase II (RNAPII)-mediated transcription, RNAPII-mediated transcription at diverse functional non-coding transcriptional units, and RNAPII-mediated transcription during promoter-proximal pausing at protein-encoding genes.

Nonsense-mediated mRNA decay

(NMD). Translation-dependent mRNA quality-control and quantity-control pathway that mediates the cytoplasmic decay of mRNAs terminating translation upstream of an exon–junction complex and/or a long or structured 3′-UTR.

Non-stop mRNA decay

Decay pathway triggered when ribosomes translate to the 3′-end of an mRNA because the mRNA lacks a translation termination codon.

Nuclear speckles

Membraneless nuclear organelles rich in transcription, pre-mRNA processing and nuclear export factors, small nuclear RNAs, and poly(A)+ RNAs. These structures are thought to function as storage centres and active sites of pre-mRNA processing.

Paraspeckles

Membraneless nuclear organelles containing the long non-coding RNA NEAT1 and that influence nuclear RNA processes, such as by sequestering RNAs harbouring long double-stranded structures.

Poly(A)-specific ribonuclease

(PARN). 5′-End cap-binding and poly(A)-binding protein best characterized for its ability to stabilize non-coding RNAs, including microRNAs and the telomerase RNA, via the removal of oligo(A) tails.

Promoter-proximal pausing

RNAPII pausing 20–60 nucleotides downstream of a transcription start site. It constitutes a quality control checkpoint that regulates the transcription of most, if not all, protein-encoding genes in higher eukaryotes.

Restrictor

ARS2-associated protein complex, composed of ZC3H4 and WDR82, that promotes transcription termination at non-coding genes or prematurely at protein-coding genes in a mechanism that probably does not require cleavage of the nascent RNA.

Rixosome

Multienzyme complex that is formed by the RIX1 complex, which includes a SUMO protease activity, and a RNase polynucleotide kinase complex.

RNAPII C-terminal domain

Tandem heptad repeats that extend the C-terminus of POLR2A, the largest RNAPII subunit, and whose complex phosphorylation status influences transcriptional and co-transcriptional processes.

Serine–arginine-rich proteins

RNA-binding proteins with serine-rich and arginine-rich domains that couple gene transcription, pre-mRNA splicing and mRNA export to the cytoplasm.

Transcription and export (TREX) complexes

A tetrameric assembly of four THO–UAP56 complexes recruited to spliced mRNA by ALYREF that licenses messenger ribonucleoproteins for nuclear export by NXF1–NXT1.

Transposable elements

Repetitive DNA sequences, largely restricted to inactivated retrotransposon insertions, that constitute up to 50% of mammalian genomes. Although intragenic transposable elements can harbour regulatory functions, intergenic transposable elements are largely parasitic and silenced.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rambout, X., Maquat, L.E. Nuclear mRNA decay: regulatory networks that control gene expression. Nat Rev Genet (2024). https://doi.org/10.1038/s41576-024-00712-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-024-00712-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing