Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

From silicon(II)-based dioxygen activation to adducts of elusive dioxasiliranes and sila-ureas stable at room temperature

Abstract

Dioxygen activation for the subsequent oxygenation of organic substrates that involves cheap and environmentally friendly chemical elements is at the cutting edge of chemical research. As silicon is a non-toxic and highly oxophilic element, the use of silylenes could be attractive for facile dioxygen activation to give dioxasiliranes with a SiO2–peroxo ring as versatile oxo-transfer reagents. However, the latter are elusive species, and have been generated and studied only in argon matrices at −233 °C. Recently, it was demonstrated that unstable silicon species can be isolated by applying the concept of donor–acceptor stabilization. We now report the first synthesis and crystallographic characterization of dioxasiliranes stabilized by N-heterocyclic carbenes that feature a three-membered SiO2–peroxide ring, isolable at room temperature. Unexpectedly, these can undergo internal oxygen transfer in toluene solution at ambient temperature to give a unique complex of cyclic sila-urea with C=O → Si=O interaction and the shortest Si=O double-bond distance reported to date.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transient dioxasiliranes I and their rearrangement to silanoic esters II.
Figure 2: Synthesis of 2a, 2b and 3.
Figure 3: Oak Ridge Thermal-Ellipsoid Plot (ORTEP) of the isostructural molecules 2a (R′ = i-Pr) and 2b (R′ = Me) in the crystal.
Figure 4: ORTEP of the molecular structure of 3 in the crystal.
Figure 6: ELF representation (ELF surface = 0.80 isosurface) of the Si–O1 versus C–O2 and C–O2 → Si bonding of the model compound 3′ (B3YLP/TZVPP//RI-BP86/TZVP).
Figure 5: Resonance structures 3A and 3B.

Similar content being viewed by others

References

  1. Nam, W. Special issue on dioxygen activation by metalloenzymes and models. Acc. Chem. Res. 40, 465–634 (2007).

    Article  CAS  Google Scholar 

  2. Meunier, B. Metal-Oxo and Metal-Peroxo Species in Catalytic Oxidations (Springer, 2000).

    Book  Google Scholar 

  3. Costas, M., Mehn, M. P., Jensen, M. P. & Que, L. Jr Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models and intermediates. Chem. Rev. 104, 939–986 (2004).

    Article  CAS  Google Scholar 

  4. Lewis, E. A. & Tolman, W. B. Reactivity of dioxygen–copper systems. Chem. Rev. 104, 1047–1076 (2004).

    Article  CAS  Google Scholar 

  5. Cho, J. et al. Geometric and electronic structure and reactivity of a mononuclear ‘side-on’ nickel(III)–peroxo complex. Nature Chem. 1, 568–572 (2009).

    Article  CAS  Google Scholar 

  6. Yao, S. et al. O–O bond activation in heterobimetallic peroxides: synthesis of the peroxide [LNi(μ,η22-O2)K] and its conversion into a bis(μ-hydroxo) nickel zinc complex. Angew. Chem. Int. Ed. 48, 8107–8110 (2009).

    Article  CAS  Google Scholar 

  7. Edwards, J. K. et al. Switching off the hydrogen peroxide hydrogenation in the direct synthesis process. Science 323, 1037–1041 (2009).

    Article  CAS  Google Scholar 

  8. Adam, W. Peroxide Chemistry (Wiley, 2000).

    Book  Google Scholar 

  9. Greer, A. A view of unusual peroxides. Science, 302, 235–236 (2003).

    CAS  PubMed  Google Scholar 

  10. Curci, R., D'Accolti, L. & Fusco, C. A novel approach to the efficient oxygenation of hydrocarbons under mild conditions. Superior oxo transfer selectivity using dioxiranes. Acc. Chem. Res. 39, 1–9 (2006).

    Article  CAS  Google Scholar 

  11. Sawwan, N. & Greer, A. Rather exotic types of cyclic peroxides: heteroatom dioxiranes. Chem. Rev. 107, 3247–3285 (2007).

    Article  CAS  Google Scholar 

  12. Ishiguro, K. & Sawaki, Y. Structure and reactivity of amphoteric oxygen species. Bull. Chem. Soc. Jpn 73, 535–552 (2000).

    Article  CAS  Google Scholar 

  13. Clennan, E. L. & Pace, A. Advances in singlet oxygen chemistry. Tetrahedron 61, 6665–66691 (2005).

    Article  CAS  Google Scholar 

  14. Gasper, P. P., Holten, D., Konieczny, S. & Corey, J. Y. Laser photolysis of silylene precursors. Acc. Chem. Res. 20, 329–336 (1987).

    Article  Google Scholar 

  15. Sabdhu, V., Jodhan, A., Safarik, I. & Strausz, O. P. Dichlorosilylene: rate constant for reaction with oxygen. Chem. Phys. Lett. 135, 260–262 (1987).

    Article  Google Scholar 

  16. Permenov, D. G. & Radzig, V. A. Mechanisms of heterogeneous processes in the system SiO2+CH4 . Kinet. Catal. 45, 273–278 (2004).

    Article  CAS  Google Scholar 

  17. Murakami, Y., Koshi, M., Matsui, H., Kamiya, K. & Umeyama, H. Kinetics of the SiH3+O2 reaction: a new transition state for SiO production. J. Phys. Chem. 100, 17501–17506 (1996).

    Article  CAS  Google Scholar 

  18. Becerra, R. et al. Time-resolved gas-phase kinetic and quantum chemical studies of the reaction of silylene with oxygen. Phys. Chem. Chem. Phys. 7, 2900–2908 (2005).

    Article  CAS  Google Scholar 

  19. Patyk, A., Sander, W., Gauss, J. & Cremer, D. Dimethyldioxasilirane. Angew. Chem. Int. Ed. Engl. 28, 898–900 (1989).

    Article  Google Scholar 

  20. Sander, W. & Kirschfeld, A. in Matrix-Isolation of Strained Three-Membered Ring Systems Vol. 4 (ed. Halton, B.) Ch. 2, 1–80 (JAI Press, 1995).

    Google Scholar 

  21. Bornemann, H. & Sander, W. Oxidation of methyl(phenyl)silylene – synthesis of a dioxasilirane. J. Am. Chem. Soc. 122, 6727–6734 (2000).

    Article  CAS  Google Scholar 

  22. Wang, Y. et al. A stable silicon(0) compound with a Si=Si double bond. Science 321, 1069–1071 (2008).

    Article  CAS  Google Scholar 

  23. Yao, S., Brym, M., van Wüllen, C. & Driess, M. From a stable silylene to a mixed-valent disiloxane and an isolable silaformamide–borane complex with considerable silicon–oxygen double-bond character. Angew. Chem. Int. Ed. 46, 4159–4162 (2007).

    Article  CAS  Google Scholar 

  24. Driess, M., Yao, S., Brym, M., van Wüllen, C. & Lentz, D. A new type of N-heterocyclic silylene with ambivalent reactivity. J. Am. Chem. Soc. 128, 9628–9629 (2006).

    Article  CAS  Google Scholar 

  25. Yao, S., Xiong, Y., Brym, M. & Driess, M. An isolable silanoic ester by oxygenation of a stable silylene. J. Am. Chem. Soc. 129, 7268–7269 (2007).

    Article  CAS  Google Scholar 

  26. Xiong, Y., Yao, S. & Driess, M. An isolable NHC-supported silanone. J. Am. Chem. Soc. 131, 7562–7563 (2009).

    Article  CAS  Google Scholar 

  27. Yao, S., Xiong, Y. & Driess, M. N-heterocyclic carbine (NHC)-stabilised silanechalcogenones, NHC→Si(R2)=E (E=O, S, Se, Te). Chem. Eur. J. 16, 436–439 (2010).

    Article  CAS  Google Scholar 

  28. Sander, W. et al. Dimesityldioxirane, J. Am. Chem. Soc. 119, 7265–7270 (1997).

    Article  Google Scholar 

  29. Gubelmann, M. H. & Williams, A. F. Struct. Bond., 55, 1–65 (1983).

    Article  CAS  Google Scholar 

  30. Holmes, R. R., Day, R. O., Harland, J. J. & Holmes, J. M. Synthesis and molecular structure of hydrogen-bonded cyclic anionic silicates isoelectronic with phosphoranes. Structural principles of five-coordinated silicon. Organometallics 3, 347–353 (1984).

    Article  CAS  Google Scholar 

  31. Pülm, M., Willeke, R. & Tacke, R. in Organosilicon Chemistry IV – From Molecules to Materials (eds Auner, N. & Weis, J.) 478–488 (Wiley-VCH, 2000).

    Google Scholar 

  32. Sheldrick, G. M. SHELX-97 Program for crystal structure determination (Universität Göttingen, 1997).

  33. Avakyan, V. G., Sidorkin, V. F., Belogolova, E. F., Guselnikov, S. L. & Gusel'nikov, L. E. AIM and ELF electronic structure/G2 and G3 π-bond energy relationship for doubly bonded silicon species, H2Si=X (X=E14H2, E15H, E16). Organometallics 25, 6007–6013 (2006).

    Article  CAS  Google Scholar 

  34. Epping, J. D., Yao, S., Karni, M., Apeloig, Y. & Driess, M. Si=X Multiple bonding with four coordinate silicon? Insights into the nature of the Si=O and Si=S double bonds in stable silanoic esters and thioesters: a combined NMR spectroscopic and computational study. J. Am. Chem. Soc. 132, 5443–5455 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Deutsche Forschungsgemeinschaft (DR226/17-1) and the Cluster of Excellence ‘Unifying Concepts in Catalysis’ sponsored by the Deutsche Forschungsgemeinschaft and administered by the Technische Universität Berlin. We thank A. Company for experimental assistance. Work in Würzburg was supported by Deutsche Forschungsgemeinschaft within priority programme SPP1178 ‘Experimental Electron Density as the Key to Understand Chemical Interactions’ (KA1187/9-2).

Author information

Authors and Affiliations

Authors

Contributions

M.D. conceived and designed the concepts and experiments. Y.X. and S.Y. carried out the experiments. S.Y. collected and solved the XRD data. R.M. and M.K. designed and carried out the quantum-chemical work. M.D. and M.K. co-wrote the manuscript.

Corresponding author

Correspondence to Matthias Driess.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 666 kb)

Supplementary information

Crystallographic data for compound 2a (CIF 21 kb)

Supplementary information

Crystallographic data for compound 2b (CIF 21 kb)

Supplementary information

Crystallographic data for compound 3 (CIF 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, Y., Yao, S., Müller, R. et al. From silicon(II)-based dioxygen activation to adducts of elusive dioxasiliranes and sila-ureas stable at room temperature. Nature Chem 2, 577–580 (2010). https://doi.org/10.1038/nchem.666

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.666

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing