Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Persistent organonickel complexes as general platforms for Csp2–Csp3 coupling reactions

Abstract

The importance of constructing Csp2–Csp3 bonds has motivated the development of electrochemical, photochemical and thermal activation methods to reductively couple abundant aryl and alkyl electrophiles. However, these methodologies are limited to couplings of very specific substrate classes and require specialized sets of catalysts and reaction set-ups. Here we show a consolidation of these myriad strategies into a single set of conditions that enable reliable alkyl–aryl couplings, including those that were previously unknown. These reactions rely on the discovery of unusually persistent organonickel complexes that serve as stoichiometric platforms for C(sp2)–C(sp3) coupling. Aryl, heteroaryl or vinyl complexes of Ni can be inexpensively prepared on a multigram scale by mild electroreduction from the corresponding C(sp2) electrophile. Organonickel complexes can be isolated and stored or telescoped directly to reliably diversify drug-like molecules. Finally, the procedure was miniaturized to micromole scales by integrating soluble battery chemistries as redox initiators, enabling a high-throughput exploration of substrate diversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Convergent strategy for C–C coupling.
Fig. 2: Evaluation of Ni complexes.
Fig. 3: Synthesis and reactivity of organonickel complexes.
Fig. 4: High-throughput experimentation.

Similar content being viewed by others

Data availability

All experimental data, copies of spectra and crystallographic data are available in the Supplementary Information. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition no. CCDC 2290873 (complex 1). Copies of the data can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/.

References

  1. Dombrowski, A. W. et al. Expanding the medicinal chemist toolbox: comparing seven C(sp2)-C(sp3) cross-coupling methods by library synthesis. ACS Med. Chem. Lett. 11, 597–604 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, X., Dai, Y. & Gong, H. Nickel-catalyzed reductive couplings. Top. Curr. Chem. 374, 43 (2016).

    Article  Google Scholar 

  4. Le, C., Chen, T. Q., Liang, T., Zhang, P. & MacMillan, D. W. C. A radical approach to the copper oxidative addition problem: trifluoromethylation of bromoarenes. Science 360, 1010–1014 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cho, E. J. et al. The palladium-catalyzed trifluoromethylation of aryl chlorides. Science 328, 1679–1681 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hamby, T. B., LaLama, M. J. & Sevov, C. S. Controlling Ni redox states by dynamic ligand exchange for electroreductive Csp3-Csp2 coupling. Science 376, 410–416 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weix, D. J. Methods and mechanisms for cross-electrophile coupling of Csp2 halides with alkyl electrophiles. Acc. Chem. Res. 48, 1767–1775 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Palkowitz, M. D. et al. Overcoming limitations in decarboxylative arylation via Ag-Ni electrocatalysis. J. Am. Chem. Soc. 144, 17709–17720 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harwood, S. J. et al. Modular terpene synthesis enabled by mild electrochemical couplings. Science 375, 745–752 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Salgueiro, D. C., Chi, B. K., Guzei, I. A., Garc¡a-Reynaga, P. & Weix, D J. Control of redox-active ester reactivity enables a general cross-electrophile approach to access arylated strained rings. Angew. Chem. Int. Ed 61, e202205673 (2022).

    Article  CAS  Google Scholar 

  11. Zuo, Z. et al. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides. Science 345, 437–440 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Twitty, J. C. et al. Diversifying amino acids and peptides via deaminative reductive cross-couplings leveraging high-throughput experimentation. J. Am. Chem. Soc. 145, 5684–5695 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yi, J., Badir, S. O., Kammer, L. M., Ribagorda, M. & Molander, G. A. Deaminative reductive arylation enabled by nickel/photoredox dual catalysis. Org. Lett. 21, 3346–3351 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martin-Montero, R., Yatham, V. R., Yin, H., Davies, J. & Martin, R. Ni-catalyzed reductive deaminative arylation at sp3 carbon centers. Org. Lett. 21, 2947–2951 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Yue, H. et al. C-N bond activation: activated primary amines as alkylating reagents in reductive cross-coupling. Chem. Sci. 10, 4430–4435 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Douthwaite, J. L. et al. Formal cross-coupling of amines and carboxylic acids to form sp3sp2 carbon–carbon bonds. J. Am. Chem. Soc. 145, 10930–10937 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kennedy, S. H., Dherange, B. D., Berger, K. J. & Levin, M. D. Skeletal editing through direct nitrogen deletion of secondary amines. Nature 593, 223–227 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Holst, D. E., Wang, D. J., Kim, M. J., Guzei, I. A. & Wickens, Z. K. Aziridine synthesis by coupling amines and alkenes via an electrogenerated dication. Nature 596, 74–79 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ruffoni, A., Hampton, C., Simonetti, M. & Leonori, D. Photoexcited nitroarenes for the oxidative cleavage of alkenes. Nature 610, 81–86 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Uehling, M. R., King, R. P., Krska, S. W., Cernak, T. & Buchwald, S. L. Pharmaceutical diversification via palladium oxidative addition complexes. Science 363, 405–408 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Corcoran, E. B. et al. Aryl amination using ligand-free Ni(II) salts and photoredox catalysis. Science 353, 279–283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. Radicals: reactive intermediates with translational potential. J. Am. Chem. Soc. 138, 12692–12714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Diccianni, J., Lin, Q. & Diao, T. Mechanisms of nickel-catalyzed coupling reactions and applications in alkene functionalization. Acc. Chem. Res. 53, 906–919 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ting, S. I. et al. 3d-d excited states of Ni(II) complexes relevant to photoredox catalysis: spectroscopic identification and mechanistic implications. J. Am. Chem. Soc. 142, 5800–5810 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Lin, Q. & Diao, T. Mechanism of Ni-catalyzed reductive 1,2-dicarbofunctionalization of alkenes. J. Am. Chem. Soc. 141, 17937–17948 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Piszel, P. E. et al. Protodemetalation of (bipyridyl)Ni(II)–aryl complexes shows evidence for five-, six- and seven-membered cyclic pathways. J. Am. Chem. Soc. 145, 8517–8528 (2023).

    CAS  Google Scholar 

  27. Terrett, J. A., Cuthbertson, J. D., Shurtleff, V. W. & MacMillan, D. W. C. Switching on elusive organometallic mechanisms with photoredox catalysis. Nature 524, 330–334 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martin, R. et al. Late-stage C(sp2)-C(sp3) diversification via nickel oxidative addition complexes. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/64cca70469bfb8925a551908 (2023).

  29. Hansen, E. C. et al. New ligands for nickel catalysis from diverse pharmaceutical heterocycle libraries. Nat. Chem. 8, 1126–1130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, P., Le, C. C. & MacMillan, D. W. C. Silyl radical activation of alkyl halides in metallaphotoredox catalysis: a unique pathway for cross-electrophile coupling. J. Am. Chem. Soc. 138, 8084–8087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Perkins, R. J., Pedro, D. J. & Hansen, E. C. Electrochemical nickel catalysis for sp2-sp3 cross-electrophile coupling reactions of unactivated alkyl halides. Org. Lett. 19, 3755–3758 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Truesdell, B. L., Hamby, T. B. & Sevov, C. S. General C(sp2)-C(sp3) cross-electrophile coupling reactions enabled by overcharge protection of homogeneous electrocatalysts. J. Am. Chem. Soc. 142, 5884–5893 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Prieto Kullmer, C. N. et al. Accelerating reaction generality and mechanistic insight through additive mapping. Science 376, 532–539 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang, J. et al. Formation of C(sp2)-C(sp3) bonds instead of amide C-N bonds from carboxylic acid and amine substrate pools by decarbonylative cross-electrophile coupling. J. Am. Chem. Soc. 145, 9951–9958 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Kariofillis, S. K. et al. Using data science to guide aryl bromide substrate scope analysis in a Ni/photoredox-catalyzed cross-coupling with acetals as alcohol-derived radical sources. J. Am. Chem. Soc. 144, 1045–1055 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kutchukian, P. S. et al. Chemistry informer libraries: a chemoinformatics enabled approach to evaluate and advance synthetic methods. Chem. Sci. 7, 2604–2613 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tcyrulnikov, S. et al. Dissection of alkylpyridinium structures to understand deamination reactions. ACS Catal. 11, 8456–8466 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. West, M. S., Gabbey, A. L., Huestis, M. P. & Rousseaux, S. A. L. Ni-catalyzed reductive cross-coupling of cyclopropylamines and other strained ring NHP esters with (hetero)aryl halides. Org. Lett. 24, 8441–8446 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Rein, J. et al. Unlocking the potential of high-throughput experimentation for electrochemistry with a standardized microscale reactor. ACS Cent. Sci. 7, 1347–1355 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gütz, C., Klöckner, B. & Waldvogel, S. R. Electrochemical screening for electroorganic synthesis. Org. Process Res. Dev. 20, 26–32 (2016).

    Article  Google Scholar 

  41. Winsberg, J., Hagemann, T., Janoschka, T., Hager, M. D. & Schubert, U. S. Redox-flow batteries: from metals to organic redox-active materials. Angew. Chem. Int. Ed. 56, 686–711 (2017).

    Article  CAS  Google Scholar 

  42. Sevov, C. S., Fisher, S. L., Thompson, L. T. & Sanford, M. S. Mechanism-based development of a low-potential, soluble and cyclable multielectron anolyte for nonaqueous redox flow batteries. J. Am. Chem. Soc. 138, 15378–15384 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, S.-J. et al. Accessing three-dimensional molecular diversity through benzylic C-H cross-coupling. Nat. Synth 2, 998–1008 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the National Institutes of Health (NIH R35 GM138373) and the Alfred P. Sloan Research Fellowship for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

L.P.D., T.B.H. and C.S.S. conceived the work and designed the experiments. L.P.D., H.F.S., T.B.H., M.J.L. and D.K. performed all experiments and collected all data. L.P.D. and H.F.S. performed all high-throughput reactions. L.P.D. and C.Q.H. performed parameterization studies. All authors analysed the data. C.S.S. wrote the paper, and all authors provided revisions.

Corresponding authors

Correspondence to Dipannita Kalyani or Christo S. Sevov.

Ethics declarations

Competing interests

L.P.D., T.B.H., H.F.S. and C.S.S. have filed patent applications directed to the technology described here. The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24, X-ray crystal structure, all synthetic procedures and NMR spectra.

Supplementary Data 1

Crystallographic data for complex 1; CCDC reference 2290873.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, L.P., Starbuck, H.F., Hamby, T.B. et al. Persistent organonickel complexes as general platforms for Csp2–Csp3 coupling reactions. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01528-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01528-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing