Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism

Abstract

High concentrations of extracellular phosphate are toxic to cells. Impaired urinary phosphate excretion increases serum phosphate level and induces a premature-ageing phenotype. Urinary phosphate levels are increased by dietary phosphate overload and might induce tubular injury and interstitial fibrosis. Extracellular phosphate exerts its cytotoxic effects by forming insoluble nanoparticles with calcium and fetuin-A; these nanoparticles are referred to in this Review as calciprotein particles. Calciprotein particles are highly bioactive ligands that can induce various cellular responses, including the osteogenic transformation of vascular smooth muscle cells and cell death of vascular endothelial cells and renal tubular epithelial cells. Calciprotein particles are detected in the serum of animal models of kidney disease and in patients with chronic kidney disease (CKD) and might be associated with a (mal)adaptation of the endocrine axes mediated by fibroblast growth factors and Klothos that regulate phosphate homeostasis and ageing. These observations raise the possibility that calciprotein particles contribute to the pathogenesis of CKD. This theory, if verified, is expected to provide novel diagnostic markers and therapeutic targets in CKD.

Key Points

  • Calciprotein particles are cytotoxic nanoparticles composed of inorganic calcium–phosphate crystals and mineral binding proteins, such as fetuin-A

  • Calciprotein particles circulate in the blood of patients with chronic kidney disease (CKD) and may contribute to vascular calcification, chronic inflammation and a premature-ageing phenotype

  • Raised phosphate intake and/or decreased nephron number increase the rate of phosphate excretion per nephron, potentially causing calciprotein particle formation in the tubular lumen and tubular injury

  • Serum fibroblast growth factor 23 (FGF-23) level correlates with phosphate excretion per nephron and, when combined with 24 h urinary phosphate excretion, may be useful for estimating changes in residual nephron number

  • A new paradigm for phosphate restriction proposed in this Review argues for phosphate binders to be used in patients with CKD and an abnormally high FGF-23 level, regardless of serum phosphate level

  • The therapeutic goal is to reduce serum FGF-23 level but not serum phosphate level, with the primary aim of preventing histological kidney damage and progression of CKD without increasing vascular calcification and cardiovascular events

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FGF–Klotho endocrine axes.
Figure 2: The formation of calciprotein particles.

Similar content being viewed by others

References

  1. Wolfe-Simon, F. et al. A bacterium that can grow by using arsenic instead of phosphorus. Science 332, 1163–1166 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Hiza, H., Bente, L. & Fungwe, T. Nutrient content of the U.S. food supply, 2005. U.S. Department of Agriculture, Center for Nutritional Policy and Promotion [online], (2008).

    Google Scholar 

  3. Uribarri, J. Phosphorus additives in food and their effect in dialysis patients. Clin. J. Am. Soc. Nephrol. 4, 1290–1292 (2009).

    Article  PubMed  Google Scholar 

  4. Schiavi, S. C. & Kumar, R. The phosphatonin pathway: new insights in phosphate homeostasis. Kidney Int. 65, 1–14 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Mitchell, H. H., Hamilton, T. S., Steggerda, F. R. & Bean, H. W. The chemical composition of the adult human body and its bearing on the biochemistry of growth. J. Biol. Chem. 96, 625–637 (1945).

    Google Scholar 

  6. Kuro-o, M. Phosphate and Klotho. Kidney Int. Suppl. 79, S20–S23 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  7. Shimada, T. et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 19, 429–435 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. White, K. E. et al. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int. 60, 2079–2086 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Ben-Dov, I. Z. et al. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest. 117, 4003–4008 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kurosu, H. et al. Regulation of fibroblast growth factor-23 signaling by klotho. J. Biol. Chem. 281, 6120–6123 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Urakawa, I. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444, 770–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Azuma, M. et al. Promoter methylation confers kidney-specific expression of the Klotho gene. FASEB J. 26, 4264–4274 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nagai, T. et al. Cognition impairment in the genetic model of aging klotho gene mutant mice: a role of oxidative stress. FASEB J. 17, 50–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Kamemori, M. et al. Expression of Klotho protein in the inner ear. Hear. Res. 171, 103–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Toyama, R. et al. Impaired regulation of gonadotropins leads to the atrophy of the female reproductive system in klotho-deficient mice. Endocrinology 147, 120–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Faul, C. et al. FGF23 induces left ventricular hypertrophy. J. Clin. Invest. 121, 4393–4408 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Suga, T. et al. Disruption of the klotho gene causes pulmonary emphysema in mice. Defect in maintenance of pulmonary integrity during postnatal life. Am. J. Respir. Cell Mol. Biol. 22, 26–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Kawaguchi, H. et al. Independent impairment of osteoblast and osteoclast differentiation in klotho mouse exhibiting low-turnover osteopenia. J. Clin. Invest. 104, 229–237 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsujikawa, H., Kurotaki, Y., Fujimori, T., Fukuda, K. & Nabeshima, Y. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol. Endocrinol. 17, 2393–2403 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Shimada, T. et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest. 113, 561–568 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Farrow, E. G., Davis, S. I., Summers, L. J. & White, K. E. Initial FGF23-mediated signaling occurs in the distal convoluted tubule. J. Am. Soc. Nephrol. 20, 955–960 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Olauson, H. et al. Targeted deletion of Klotho in kidney distal tubule disrupts mineral metabolism. J. Am. Soc. Nephrol. 23, 1641–1651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goetz, R. et al. Molecular insights into the Klotho-dependent, endocrine mode of action of FGF19 subfamily members. Mol. Cell Biol. 27, 3417–3428 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Inagaki, T. et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2, 217–225 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Choi, M. et al. Identification of a hormonal basis for gallbladder filling. Nat. Med. 12, 1253–1255 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Kir, S. et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331, 1621–1624 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kharitonenkov, A. et al. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 115, 1627–1635 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Inagaki, T. et al. Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab. 5, 415–425 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Potthoff, M. J. et al. FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl Acad. Sci. USA 106, 10853–10858 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Badman, M. K. et al. Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell. Metab. 5, 426–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Potthoff, M. J., Kliewer, S. A. & Mangelsdorf, D. J. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev. 26, 312–324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ito, S. et al. Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein. Mech. Dev. 98, 115–119 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Ogawa, Y. et al. βKlotho is required for metabolic activity of fibroblast growth factor 21. Proc. Natl Acad. Sci. USA 104, 7432–7437 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kurosu, H. et al. Tissue-specific expression of βKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J. Biol. Chem. 282, 26687–26695 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Masuyama, R. et al. Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J. Clin. Invest. 116, 3150–3159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kuro-o, M. Endocrine FGFs and Klothos: emerging concepts. Trends Endocrinol. Metab. 19, 239–245 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Kuro-o, M. (Ed.) Endocrine FGFs and Klothos (Landes Bioscience and Springer Science, New York, 2012).

    Book  Google Scholar 

  39. Stubbs, J. R. et al. Role of hyperphosphatemia and 1,25-Dihydroxyvitamin D in vascular calcification and mortality in fibroblastic growth factor 23 null mice. J. Am. Soc. Nephrol. 18, 2116–2124 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Hesse, M., Frohlich, L. F., Zeitz, U., Lanske, B. & Erben, R. G. Ablation of vitamin D signaling rescues bone, mineral, and glucose homeostasis in Fgf-23 deficient mice. Matrix Biol. 26, 75–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Razzaque, M. S., Sitara, D., Taguchi, T., St-Arnaud, R. & Lanske, B. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J. 20, 720–722 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Ohnishi, M., Nakatani, T., Lanske, B. & Razzaque, M. S. Reversal of mineral ion homeostasis and soft-tissue calcification of klotho knockout mice by deletion of vitamin D 1α-hydroxylase. Kidney Int. 75, 1166–1172 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ohnishi, M. & Razzaque, M. S. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J. 24, 3562–3571 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beck, L. et al. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc. Natl Acad. Sci. USA 95, 5372–5377 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ohnishi, M., Nakatani, T., Lanske, B. & Razzaque, M. S. In vivo genetic evidence for suppressing vascular and soft-tissue calcification through the reduction of serum phosphate levels, even in the presence of high serum calcium and 1,25-dihydroxyvitamin-D levels. Circ. Cardiovasc. Genet. 2, 583–590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hruska, K. A., Mathew, S., Lund, R., Qiu, P. & Pratt, R. Hyperphosphatemia of chronic kidney disease. Kidney Int. 74, 148–157 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stenvinkel, P. & Larsson, T. E. Chronic kidney disease: a clinical model of premature aging. Am. J. Kidney Dis. http://dx.doi.org/10.1053/j.ajkd.2012.11.051.

  48. Isakova, T. et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 79, 1370–1378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koh, N. et al. Severely reduced production of klotho in human chronic renal failure kidney. Biochem. Biophys. Res. Commun. 280, 1015–1020 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Galitzer, H., Ben-Dov, I. Z., Silver, J. & Naveh-Many, T. Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int. 77, 211–218 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Komaba, H. et al. Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int. 77, 232–238 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Krajisnik, T. et al. Parathyroid Klotho and FGF-receptor 1 expression decline with renal function in hyperparathyroid patients with chronic kidney disease and kidney transplant recipients. Kidney Int. 78, 1024–1032 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Kumata, C. et al. Involvement of α-klotho and fibroblast growth factor receptor in the development of secondary hyperparathyroidism. Am. J. Nephrol. 31, 230–238 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Kestenbaum, B. et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J. Am. Soc. Nephrol. 16, 520–528 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Ganesh, S. K., Stack, A. G., Levin, N. W., Hulbert-Shearon, T. & Port, F. K. Association of elevated serum PO4, Ca × PO4 product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J. Am. Soc. Nephrol. 12, 2131–2138 (2001).

    CAS  PubMed  Google Scholar 

  56. Martin, K. J. & Gonzalez, E. A. Prevention and control of phosphate retention/hyperphosphatemia in CKD-MBD: what is normal, when to start, and how to treat? Clin. J. Am. Soc. Nephrol. 6, 440–446 (2011).

    Article  PubMed  Google Scholar 

  57. Martin, G. M. Genetic syndromes in man with potential relevance to the pathobiology of aging. Birth Defects 14, 5–39 (1978).

    CAS  PubMed  Google Scholar 

  58. Lombard, D. B. et al. DNA repair, genome stability, and aging. Cell 120, 497–512 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Herbig, U., Jobling, W. A., Chen, B. P., Chen, D. J. & Sedivy, J. M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21CIP1, but not p16INK4a. Mol. Cell 14, 501–513 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Choudhury, A. R. et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat. Genet. 39, 99–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Tyner, S. D. et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 415, 45–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038–1043 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Flurkey, K., Papaconstantinou, J., Miller, R. A. & Harrison, D. E. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl Acad. Sci. USA 98, 6736–6741 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ramirez, R. et al. Stress-induced premature senescence in mononuclear cells from patients on long-term hemodialysis. Am. J. Kidney Dis. 45, 353–359 (2005).

    Article  PubMed  Google Scholar 

  67. Smogorzewski, M. J. & Massry, S. G. Liver metabolism in CRF. Am. J. Kidney Dis. 41 (Suppl. 1), S127–S132 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Inagaki, T. et al. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab. 8, 77–83 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lin, Z. et al. Circulating FGF21 levels are progressively increased from the early to end stages of chronic kidney diseases and are associated with renal function in Chinese. PLoS ONE 6, e18398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Han, S. H. et al. Serum fibroblast growth factor-21 concentration is associated with residual renal function and insulin resistance in end-stage renal disease patients receiving long-term peritoneal dialysis. Metabolism 59, 1656–1662 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, Y. et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. eLife 1, e00065 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Di Marco, G. S. et al. Increased inorganic phosphate induces human endothelial cell apoptosis in vitro. Am. J. Physiol. Renal Physiol. 294, F1381–F1387 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Shuto, E. et al. Dietary phosphorus acutely impairs endothelial function. J. Am. Soc. Nephrol. 20, 1504–1512 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Steitz, S. A. et al. Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ. Res. 89, 1147–1154 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Jono, S. et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ. Res. 87, E10–E17 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Reynolds, J. L. et al. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J. Am. Soc. Nephrol. 15, 2857–2867 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Sage, A. P., Lu, J., Tintut, Y. & Demer, L. L. Hyperphosphatemia-induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int. 79, 414–422 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Villa-Bellosta, R. & Sorribas, V. Phosphonoformic acid prevents vascular smooth muscle cell calcification by inhibiting calcium-phosphate deposition. Arterioscler. Thromb. Vasc. Biol. 29, 761–766 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Ewence, A. E. et al. Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ. Res. 103, e28–e34 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Li, X., Yang, H. Y. & Giachelli, C. M. Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circ. Res. 98, 905–912 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Nancollas, G. H., LoRe, M., Perez, L., Richardson, C. & Zawacki, S. J. Mineral phases of calcium phosphate. Anat. Rec. 224, 234–241 (1989).

    Article  CAS  PubMed  Google Scholar 

  82. Pak, C. Y. C., Eanes, E. D. & Ruskin, B. Spontaneous precipitation of brushite in urine: evidence that brushite Is the nidus of renal stones originating as calcium phosphate. Proc. Natl Acad. Sci. USA 68, 1456–1460 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Heiss, A., Pipich, V., Jahnen-Dechent, W. & Schwahn, D. Fetuin-A is a mineral carrier protein: small angle neutron scattering provides new insight on fetuin-a controlled calcification inhibition. Biophys. J. 99, 3986–3995 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rochette, C. N. et al. A shielding topology stabilizes the early stage protein-mineral complexes of fetuin-A and calcium phosphate: a time-resolved small-angle X-ray study. Chembiochem. 10, 735–740 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Heiss, A., Jahnen-Dechent, W., Endo, H. & Schwahn, D. Structural dynamics of a colloidal protein-mineral complex bestowing on calcium phosphate a high solubility in biological fluids. Biointerphases 2, 16–20 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Heiss, A. et al. Structural basis of calcification inhibition by α2-HS glycoprotein/fetuin-A. Formation of colloidal calciprotein particles. J. Biol. Chem. 278, 13333–13341 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Schafer, C. et al. The serum protein α2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J. Clin. Invest. 112, 357–366 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Khoshniat, S. et al. Phosphate-dependent stimulation of MGP and OPN expression in osteoblasts via the ERK1/2 pathway is modulated by calcium. Bone 48, 894–902 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Herrmann, M. et al. Clearance of fetuin-A--containing calciprotein particles is mediated by scavenger receptor-A. Circ. Res. 111, 575–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Hamano, T. et al. Fetuin-mineral complex reflects extraosseous calcification stress in CKD. J. Am. Soc. Nephrol. 21, 1998–2007 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Matsui, I. et al. Fully phosphorylated fetuin-A forms a mineral complex in the serum of rats with adenine-induced renal failure. Kidney Int. 75, 915–928 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Smith, E. R. et al. Phosphorylated fetuin-A-containing calciprotein particles are associated with aortic stiffness and a procalcific milieu in patients with pre-dialysis CKD. Nephrol. Dial. Transplant. 27, 1957–1966 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Block, G. A. et al. Effects of phosphate binders in moderate CKD. J. Am. Soc. Nephrol. 23, 1407–1415 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rodriguez-Ortiz, M. E. et al. Calcium deficiency reduces circulating levels of FGF23. J. Am. Soc. Nephrol. 23, 1190–1197 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mackay, E. M. & Oliver, J. Renal damage following the ingestion of a diet containing an excess of inorganic phosphate. J. Exp. Med. 61, 319–334 (1935).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ori, Y. et al. Acute phosphate nephropathy-an emerging threat. Am. J. Med. Sci. 336, 309–314 (2008).

    Article  PubMed  Google Scholar 

  97. Haut, L. L., Alfrey, A. C., Guggenheim, S., Buddington, B. & Schrier, N. Renal toxicity of phosphate in rats. Kidney Int. 17, 722–731 (1980).

    Article  CAS  PubMed  Google Scholar 

  98. Bank, N., Su, W. S. & Aynedjian, H. S. A micropuncture study of renal phosphate transport in rats with chronic renal failure and secondary hyperparathyroidism. J. Clin. Invest. 61, 884–894 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lau, K. Phosphate excess and progressive renal failure: the precipitation-calcification hypothesis. Kidney Int. 36, 918–937 (1989).

    Article  CAS  PubMed  Google Scholar 

  100. Aihara, K., Byer, K. J. & Khan, S. R. Calcium phosphate-induced renal epithelial injury and stone formation: involvement of reactive oxygen species. Kidney Int. 64, 1283–1291 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Miller, P. D. The kidney and bisphosphonates. Bone 49, 77–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Francis, M. D., Russell, R. G. & Fleisch, H. Diphosphonates inhibit formation of calcium phosphate crystals in vitro and pathological calcification in vivo. Science 165, 1264–1266 (1969).

    Article  CAS  PubMed  Google Scholar 

  103. Bertram, J. F., Douglas-Denton, R. N., Diouf, B., Hughson, M. D. & Hoy, W. E. Human nephron number: implications for health and disease. Pediatr. Nephrol. 26, 1529–1533 (2011).

    Article  PubMed  Google Scholar 

  104. Zhou, X. J. et al. The aging kidney. Kidney Int. 74, 710–720 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Ibrahim, H. N. et al. Long-term consequences of kidney donation. N. Engl. J. Med. 360, 459–469 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tan, J. C. et al. Effects of aging on glomerular function and number in living kidney donors. Kidney Int. 78, 686–692 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Young, A. et al. Bone and mineral metabolism and fibroblast growth factor 23 levels after kidney donation. Am. J. Kidney Dis. 59, 761–769 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Robertson, W. G. & Morgan, D. B. The distribution of urinary calcium excretions in normal persons and stone-formers. Clin. Chim. Acta 37, 503–508 (1972).

    Article  CAS  PubMed  Google Scholar 

  109. Gallagher, J. C. et al. Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients: effect of age and dietary calcium. J. Clin. Invest. 64, 729–736 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cebotaru, V. et al. High citrate diet delays progression of renal insufficiency in the ClC-5 knockout mouse model of Dent's disease. Kidney Int. 68, 642–652 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Gutierrez, O. et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J. Am. Soc. Nephrol. 16, 2205–2215 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Hasegawa, H. et al. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int. 78, 975–980 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Vervloet, M. G. et al. Effects of dietary phosphate and calcium intake on fibroblast growth factor-23. Clin. J. Am. Soc. Nephrol. 6, 383–389 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Antoniucci, D. M., Yamashita, T. & Portale, A. A. Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J. Clin. Endocrinol. Metab. 91, 3144–3149 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Ito, N. et al. Effect of acute changes of serum phosphate on fibroblast growth factor (FGF)23 levels in humans. J. Bone Miner. Metab. 25, 419–422 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Gutierrez, O. M., Wolf, M. & Taylor, E. N. Fibroblast growth factor 23, cardiovascular disease risk factors, and phosphorus intake in the health professionals follow-up study. Clin. J. Am. Soc. Nephrol. 6, 2871–2878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Larsson, T., Nisbeth, U., Ljunggren, O., Juppner, H. & Jonsson, K. B. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int. 64, 2272–2279 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Coresh, J. et al. Prevalence of chronic kidney disease in the United States. JAMA 298, 2038–2047 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Levin, A. et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 71, 31–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Nelson, R. G. & Tuttle, K. R. The new KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and CKD. Blood Purif. 25, 112–114 (2007).

    Article  PubMed  Google Scholar 

  121. Togao, O. et al. Assessment of renal fibrosis with diffusion-weighted MR imaging: study with murine model of unilateral ureteral obstruction. Radiology 255, 772–780 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Doi, S. et al. Klotho inhibits transforming growth factor-β1 (TGF-β1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J. Biol. Chem. 286, 8655–8665 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gutierrez, O. M. & Wolf, M. Dietary phosphorus restriction in advanced chronic kidney disease: merits, challenges, and emerging strategies. Semin. Dial. 23, 401–406 (2010).

    Article  PubMed  Google Scholar 

  124. Moe, S. M. et al. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 257–264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bell, R. R., Draper, H. H., Tzeng, D. Y., Shin, H. K. & Schmidt, G. R. Physiological responses of human adults to foods containing phosphate additives. J. Nutr. 107, 42–50 (1977).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author's work is supported in part by NIH (R01 AG019712 and DK091392).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

M. Kuro-o has received honararia from Chugai Pharmaceutical and has received research funding from Genzyme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuro-o, M. Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol 9, 650–660 (2013). https://doi.org/10.1038/nrneph.2013.111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing