Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of FGF23 production and phosphate metabolism by bone–kidney interactions

Abstract

The bone-derived hormone fibroblast growth factor 23 (FGF23) functions in concert with parathyroid hormone (PTH) and the active vitamin D metabolite, 1,25(OH)2 vitamin D (1,25D), to control phosphate and calcium homeostasis. A rise in circulating levels of phosphate and 1,25D leads to FGF23 production in bone. Circulating FGF23 acts on the kidney by binding to FGF receptors and the co-receptor α-Klotho to promote phosphaturia and reduce circulating 1,25D levels. Various other biomolecules that are produced by the kidney, including lipocalin-2, glycerol 3-phosphate, 1-acyl lysophosphatidic acid and erythropoietin, are involved in the regulation of mineral metabolism via effects on FGF23 synthesis in bone. Understanding of the molecular mechanisms that control FGF23 synthesis in the bone and its bioactivity in the kidney has led to the identification of potential targets for novel interventions. Emerging approaches to target aberrant phosphate metabolism include small molecule inhibitors that directly bind FGF23 and prevent its interactions with FGF receptors and α-Klotho, FGF23 peptide fragments that act as competitive inhibitors of intact FGF23 and small molecule inhibitors of kidney sodium-phosphate cotransporters.

Key points

  • The osteocyte-derived hormone fibroblast growth factor 23 (FGF23) controls renal handling of phosphate and active 1,25(OH)2 vitamin D(1,25D).

  • Rare heritable and common acquired disturbances in FGF23 homeostasis, including chronic kidney disease, are associated with altered mineral balance.

  • The regulation of FGF23 production in osteocytes occurs via transcriptional and post-translational mechanisms.

  • In the kidney, binding of FGF23 to its co-receptor α-Klotho and fibroblast growth factor receptors results in a reduction in blood phosphate and inhibits the production of 1,25D.

  • The kidney-derived factors glycerol-3-phophate/1-acyl lysophosphatidic acid, lipocalin-2 and erythropoietin stimulate bone FGF23 synthesis.

  • Identification of the mechanisms of FGF23 functions and the effects of FGF23 on downstream targets in the kidney could lead to the development of novel therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kidney–bone crosstalk.
Fig. 2: Potential approaches to modulating FGF23 bioactivity.

Similar content being viewed by others

References

  1. Consortium, A. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet. 26, 345–348 (2000).

    Google Scholar 

  2. Shimada, T. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl Acad. Sci. USA 98, 6500–6505 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jonsson, K. B. et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N. Engl. J. Med. 348, 1656–1663 (2003).

    CAS  PubMed  Google Scholar 

  4. Sitara, D. et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol. 23, 421–432 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Isakova, T. et al. Fibroblast growth factor 23 in patients undergoing peritoneal dialysis. Clin. J. Am. Soc. Nephrol. 6, 2688–2695 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Perwad, F. et al. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 146, 5358–5364 (2005).

    CAS  PubMed  Google Scholar 

  7. Hu, M. C. et al. Recombinant alpha-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney Int. 91, 1104–1114 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Noonan, M. L. et al. Erythropoietin and a hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHDi) lowers FGF23 in a model of chronic kidney disease (CKD). Physiol. Rep. 8, e14434 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Noonan, M. L. et al. The HIF-PHI BAY 85-3934 (Molidustat) improves anemia and is associated with reduced levels of circulating FGF23 in a CKD mouse model. J. Bone Min. Res. 36, 1117–1130 (2021).

    CAS  Google Scholar 

  10. David, V. et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int. 89, 135–146 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Clinkenbeard, E. L. et al. Conditional deletion of MurineFgf23: interruption of the normal skeletal responses to phosphate challenge and rescue of genetic hypophosphatemia. J. Bone Miner. Res. 31, 1247–1257 (2016).

    CAS  PubMed  Google Scholar 

  12. Clinkenbeard, E. L. et al. Erythropoietin stimulates murine and human fibroblast growth factor-23, revealing novel roles for bone and bone marrow. Haematologica 102, e427–e430 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Goetz, R. & Mohammadi, M. Exploring mechanisms of FGF signalling through the lens of structural biology. Nat. Rev. Mol. Cell Biol. 14, 166–180 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Itoh, N., Nakayama, Y. & Konishi, M. Roles of FGFs as paracrine or endocrine signals in liver development, health, and disease. Front. Cell Dev. Biol. 4, 30 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. Lindberg, K. et al. The kidney is the principal organ mediating Klotho effects. J. Am. Soc. Nephrol. 25, 2169–2175 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Beck-Nielsen, S. S. et al. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J. Rare Dis. 14, 58 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. de Las Rivas, M. et al. Molecular basis for fibroblast growth factor 23 O-glycosylation by GalNAc-T3. Nat. Chem. Biol. 16, 351–360 (2020).

    Google Scholar 

  18. Tagliabracci, V. S. et al. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc. Natl Acad. Sci. USA 111, 5520–5525 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Farrow, E. G., Imel, E. A. & White, K. E. Miscellaneous non-inflammatory musculoskeletal conditions. Hyperphosphatemic familial tumoral calcinosis (FGF23, GALNT3 and αKlotho). Best. Pract. Res. Clin. Rheumatol. 25, 735–747 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. White, K. E. et al. The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J. Clin. Endocrinol. Metab. 86, 497–500 (2001).

    CAS  PubMed  Google Scholar 

  21. White, K. E. et al. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int. 60, 2079–2086 (2001).

    CAS  PubMed  Google Scholar 

  22. Gattineni, J. & Baum, M. Regulation of phosphate transport by fibroblast growth factor 23 (FGF23): implications for disorders of phosphate metabolism. Pediatr. Nephrol. 25, 591–601 (2010).

    PubMed  Google Scholar 

  23. Goetz, R. et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc. Natl Acad. Sci. USA 107, 407–412 (2010).

    CAS  PubMed  Google Scholar 

  24. Lim, K. et al. α-Klotho expression in human tissues. J. Clin. Endocrinol. Metab. 100, E1308–E1318 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuro, O. M. The Klotho proteins in health and disease. Nat. Rev. Nephrol. 15, 27–44 (2019).

    Google Scholar 

  26. Kuro-o, M. et al. Mutation of the mouse Klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997).

    CAS  PubMed  Google Scholar 

  27. Nakatani, T. et al. In vivo genetic evidence for Klotho-dependent, fibroblast growth factor 23 (Fgf23)-mediated regulation of systemic phosphate homeostasis. FASEB J. 23, 433–441 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Olauson, H. et al. Targeted deletion of Klotho in kidney distal tubule disrupts mineral metabolism. J. Am. Soc. Nephrol. 23, 1641–1651 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Takeshita, A., Kawakami, K., Furushima, K., Miyajima, M. & Sakaguchi, K. Central role of the proximal tubular αKlotho/FGF receptor complex in FGF23-regulated phosphate and vitamin D metabolism. Sci. Rep. 8, 6917 (2018).

    PubMed  PubMed Central  Google Scholar 

  30. Urakawa, I. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444, 770–774 (2006).

    CAS  PubMed  Google Scholar 

  31. Portale, A. A. et al. Characterization of FGF23-dependent Egr-1 cistrome in the mouse renal proximal tubule. PLoS One 10, e0142924 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. Andrukhova, O. et al. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J. 33, 229–246 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Andrukhova, O. et al. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol. Med. 6, 744–759 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Knothe Tate, M. L., Niederer, P. & Knothe, U. In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading. Bone 22, 107–117 (1998).

    CAS  PubMed  Google Scholar 

  35. Saito, H. et al. Circulating FGF-23 is regulated by 1α,25-dihydroxyvitamin D3 and phosphorus in vivo. J. Biol. Chem. 280, 2543–2549 (2005).

    CAS  PubMed  Google Scholar 

  36. Bon, N. et al. Phosphate-dependent FGF23 secretion is modulated by PiT2/Slc20a2. Mol. Metab. 11, 197–204 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Takashi, Y. et al. Activation of unliganded FGF receptor by extracellular phosphate potentiates proteolytic protection of FGF23 by its O-glycosylation. Proc. Natl Acad. Sci. USA 116, 11418–11427 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Takashi, Y. & Fukumoto, S. Phosphate-sensing and regulatory mechanism of FGF23 production. J. Endocrinol. Invest. https://doi.org/10.1007/s40618-020-01205-9 (2020).

    Article  PubMed  Google Scholar 

  39. Takashi, Y. et al. Skeletal FGFR1 signaling is necessary for regulation of serum phosphate level by FGF23 and normal life span. Biochem. Biophys. Rep. 27, 101107 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Xiao, Z. et al. Osteocyte-specific deletion of Fgfr1 suppresses FGF23. PLoS One 9, e104154 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Rodriguez-Ortiz, M. E. et al. Calcium deficiency reduces circulating levels of FGF23. J. Am. Soc. Nephrol. 23, 1190–1197 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Akiyama, K. I. et al. Calciprotein particles regulate fibroblast growth factor-23 expression in osteoblasts. Kidney Int. 97, 702–712 (2020).

    CAS  PubMed  Google Scholar 

  43. Akiyama, K., Kimura, T. & Shiizaki, K. Biological and clinical effects of calciprotein particles on chronic kidney disease-mineral and bone disorder. Int. J. Endocrinol. 2018, 5282389 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Nguyen-Yamamoto, L., Karaplis, A. C., St-Arnaud, R. & Goltzman, D. Fibroblast growth factor 23 regulation by systemic and local osteoblast-synthesized 1,25-dihydroxyvitamin D. J. Am. Soc. Nephrol. 28, 586–597 (2017).

    CAS  PubMed  Google Scholar 

  45. Saini, R. K. et al. 1,25-dihydroxyvitamin D(3) regulation of fibroblast growth factor-23 expression in bone cells: evidence for primary and secondary mechanisms modulated by leptin and interleukin-6. Calcif. Tissue Int. 92, 339–353 (2013).

    CAS  PubMed  Google Scholar 

  46. Ito, M. et al. Vitamin D and phosphate regulate fibroblast growth factor-23 in K-562 cells. Am. J. Physiol. Endocrinol. Metab. 288, E1101–E1109 (2005).

    CAS  PubMed  Google Scholar 

  47. Dorr, K. et al. Randomized trial of etelcalcetide for cardiac hypertrophy in hemodialysis. Circ. Res. 128, 1616–1625 (2021).

    PubMed  Google Scholar 

  48. Qin, L., Raggatt, L. J. & Partridge, N. C. Parathyroid hormone: a double-edged sword for bone metabolism. Trends Endocrinol. Metab. 15, 60–65 (2004).

    CAS  PubMed  Google Scholar 

  49. Hou, Y. C., Lu, C. L. & Lu, K. C. Mineral bone disorders in chronic kidney disease. Nephrology 23, 88–94 (2018).

    CAS  PubMed  Google Scholar 

  50. Murray, T. M., Rao, L. G., Divieti, P. & Bringhurst, F. R. Parathyroid hormone secretion and action: evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl-terminal ligands. Endocr. Rev. 26, 78–113 (2005).

    CAS  PubMed  Google Scholar 

  51. Kawata, T. et al. Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. J. Am. Soc. Nephrol. 18, 2683–2688 (2007).

    CAS  PubMed  Google Scholar 

  52. Prideaux, M. et al. Generation of two multipotent mesenchymal progenitor cell lines capable of osteogenic, mature osteocyte, adipogenic, and chondrogenic differentiation. Sci. Rep. 11, 22593 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ito, N. et al. Sclerostin directly stimulates osteocyte synthesis of fibroblast growth factor-23. Calcif. Tissue Int. 109, 66–76 (2021).

    CAS  PubMed  Google Scholar 

  54. Knab, V. M. et al. Acute parathyroid hormone injection increases C-terminal but not intact fibroblast growth factor 23 levels. Endocrinology 158, 1130–1139 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Simic, P. et al. Glycerol-3-phosphate is an FGF23 regulator derived from the injured kidney. J. Clin. Invest. 130, 1513–1526 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Flo, T. H. et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917–921 (2004).

    CAS  PubMed  Google Scholar 

  57. Qiu, S., Chen, X., Pang, Y. & Zhang, Z. Lipocalin-2 protects against renal ischemia/reperfusion injury in mice through autophagy activation mediated by HIF1α and NF-κb crosstalk. Biomed. Pharmacother. 108, 244–253 (2018).

    CAS  PubMed  Google Scholar 

  58. Viau, A. et al. Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J. Clin. Invest. 120, 4065–4076 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Courbon, G. et al. Lipocalin 2 stimulates bone fibroblast growth factor 23 production in chronic kidney disease. Bone Res. 9, 35 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hanudel, M. R. et al. Effects of erythropoietin on fibroblast growth factor 23 in mice and humans. Nephrol. Dial. Transpl. 34, 2057–2065 (2019).

    CAS  Google Scholar 

  61. Daryadel, A. et al. Elevated FGF23 and disordered renal mineral handling with reduced bone mineralization in chronically erythropoietin over-expressing transgenic mice. Sci. Rep. 9, 14989 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Daryadel, A. et al. Erythropoietin stimulates fibroblast growth factor 23 (FGF23) in mice and men. Pflugers Arch. 470, 1569–1582 (2018).

    CAS  PubMed  Google Scholar 

  63. Wolf, M. & White, K. E. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease. Curr. Opin. Nephrol. Hypertens. 23, 411–419 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ichikawa, S. et al. Ablation of the Galnt3 gene leads to low-circulating intact fibroblast growth factor 23 (Fgf23) concentrations and hyperphosphatemia despite increased Fgf23 expression. Endocrinology 150, 2543–2550 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kinoshita, Y. & Fukumoto, S. X-Linked hypophosphatemia and FGF23-related hypophosphatemic diseases: prospect for new treatment. Endocr. Rev. 39, 274–291 (2018).

    PubMed  Google Scholar 

  66. Xiao, Z. et al. Novel small molecule fibroblast growth factor 23 inhibitors increase serum phosphate and improve skeletal abnormalities in Hyp mice. Mol. Pharmacol. 101, 408–421 (2021).

    PubMed  Google Scholar 

  67. Suzuki, Y. et al. FGF23 contains two distinct high-affinity binding sites enabling bivalent interactions with α-Klotho. Proc. Natl Acad. Sci. USA 117, 31800–31807 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Agrawal, A., Ni, P., Agoro, R., White, K. E. & DiMarchi, R. D. Identification of a second Klotho interaction site in the C terminus of FGF23. Cell Rep. 34, 108665 (2021).

    CAS  PubMed  Google Scholar 

  69. Agrawal, A. et al. Molecular elements in FGF19 and FGF21 defining KLB/FGFR activity and specificity. Mol. Metab. 13, 45–55 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee, S. et al. Structures of β-Klotho reveal a ‘zip code’-like mechanism for endocrine FGF signalling. Nature 553, 501–505 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Agoro, R. et al. Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia. FASEB J. 32, 3752–3764 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Agoro, R. et al. C-FGF23 peptide alleviates hypoferremia during acute inflammation. Haematologica 106, 391–403 (2021).

    CAS  PubMed  Google Scholar 

  73. Thomas, L. et al. PF-06869206 is a selective inhibitor of renal Pi transport: evidence from in vitro and in vivo studies. Am. J. Physiol. Renal Physiol. 319, F541–F551 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Clerin, V. et al. Selective pharmacological inhibition of the sodium-dependent phosphate cotransporter NPT2a promotes phosphate excretion. J. Clin. Invest. 130, 6510–6522 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lamb, Y. N. Burosumab: first global approval. Drugs 78, 707–714 (2018).

    CAS  PubMed  Google Scholar 

  76. Carpenter, T. O. et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J. Clin. Invest. 124, 1587–1597 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge NIH grants R21-AR059278, R01-DK112958, and R01-HL145528 (K.E.W); The David Weaver Professorship (K.E.W); and NIDDK-K99/R00 DK129705 (R.A.).

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Kenneth E. White.

Ethics declarations

Competing interests

K.E.W. receives royalties for licensing FGF23 to Kyowa Hakko Kirin Co., Ltd., has previously received funding from Akebia and currently receives funding from Calico Labs. K.E.W. also owns equity interest in FGF Therapeutics. R.A. has no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agoro, R., White, K.E. Regulation of FGF23 production and phosphate metabolism by bone–kidney interactions. Nat Rev Nephrol 19, 185–193 (2023). https://doi.org/10.1038/s41581-022-00665-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00665-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing