Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

FGF23 and klotho at the intersection of kidney and cardiovascular disease

Abstract

Cardiovascular disease is the leading cause of death in patients with chronic kidney disease (CKD). As CKD progresses, CKD-specific risk factors, such as disordered mineral homeostasis, amplify traditional cardiovascular risk factors. Fibroblast growth factor 23 (FGF23) regulates mineral homeostasis by activating complexes of FGF receptors and transmembrane klotho co-receptors. A soluble form of klotho also acts as a ‘portable’ FGF23 co-receptor in tissues that do not express klotho. In progressive CKD, rising circulating FGF23 levels in combination with decreasing kidney expression of klotho results in klotho-independent effects of FGF23 on the heart that promote left ventricular hypertrophy, heart failure, atrial fibrillation and death. Emerging data suggest that soluble klotho might mitigate some of these effects via several candidate mechanisms. More research is needed to investigate FGF23 excess and klotho deficiency in specific cardiovascular complications of CKD, but the pathophysiological primacy of FGF23 excess versus klotho deficiency might never be precisely resolved, given the entangled feedback loops that they share. Therefore, randomized trials should prioritize clinical practicality over scientific certainty by targeting disordered mineral homeostasis holistically in an effort to improve cardiovascular outcomes in patients with CKD.

Key points

  • Chronic kidney disease causes a state of fibroblast growth factor 23 (FGF23) excess and klotho deficiency that increases the risk of cardiovascular disease.

  • FGF23 acts through FGF receptor 4, independently of klotho, to promote pathological left ventricular hypertrophy and increase the risk of heart failure.

  • Whereas transmembrane klotho mediates canonical effects of FGF23 in the kidneys, soluble klotho functions as a ‘portable’ co-receptor for FGF23 in tissues that do not express klotho.

  • Soluble klotho might attenuate the adverse cardiovascular effects of FGF23.

  • Soluble klotho deficiency promotes arterial calcification and atherosclerotic disease, either independently or via concomitant hyperphosphataemia.

  • Until targeted therapies are available, randomized cardiovascular outcomes trials could test combined interventions with drugs that target mineral homeostasis, and these are already in use in patients with end-stage kidney disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of cardiovascular disease and risk factors across the spectrum of CKD.
Fig. 2: FGF23, klotho and disordered mineral homeostasis in CKD.
Fig. 3: FGF23–klotho interaction and independent effects on the kidneys and heart.
Fig. 4: Predominant signalling mechanisms of FGF23 and klotho in cardiomyocytes and cardiac fibroblasts.

Similar content being viewed by others

References

  1. National Institute of Diabetes and Digestive and Kidney Diseases. 2022 Annual Data Report. United States Renal Data System https://usrds-adr.niddk.nih.gov/2022 (2022).

  2. Ortiz, A. et al. Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet 383, 1831–1843 (2014).

    Article  PubMed  Google Scholar 

  3. Navaneethan, S. D. et al. Prevalence, predictors, and outcomes of pulmonary hypertension in CKD. J. Am. Soc. Nephrol. 27, 877–886 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Consortium, A. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet. 26, 345–348 (2000).

    Article  Google Scholar 

  5. Shimada, T. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl Acad. Sci. USA 98, 6500–6505 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wolf, M. et al. Effects of iron isomaltoside vs ferric carboxymaltose on hypophosphatemia in iron-deficiency anemia: two randomized clinical trials. J. Am. Med. Assoc. 323, 432–443 (2020).

    Article  Google Scholar 

  7. Francis, F. et al. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat. Genet 11, 130–136 (1995).

    Article  CAS  Google Scholar 

  8. Quarles, L. D. Endocrine functions of bone in mineral metabolism regulation. J. Clin. Invest. 118, 3820–3828 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shimada, T. et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest. 113, 561–568 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Saito, H. et al. Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1α,25-dihydroxyvitamin D3 production. J. Biol. Chem. 278, 2206–2211 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Shimada, T. et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 19, 429–435 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Benet-Pages, A., Orlik, P., Strom, T. M. & Lorenz-Depiereux, B. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum. Mol. Genet. 14, 385–390 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Musgrove, J. & Wolf, M. Regulation and effects of FGF23 in chronic kidney disease. Annu. Rev. Physiol. 82, 365–390 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Ito, N. et al. Effect of acute changes of serum phosphate on fibroblast growth factor (FGF)23 levels in humans. J. Bone Miner. Metab. 25, 419–422 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, W. et al. Kidney glycolysis serves as a mammalian phosphate sensor that maintains phosphate homeostasis. J. Clin. Invest. https://doi.org/10.1172/JCI164610 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Simic, P. et al. Glycerol-3-phosphate is an FGF23 regulator derived from the injured kidney. J. Clin. Invest. 130, 1513–1526 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bar, L., Stournaras, C., Lang, F. & Foller, M. Regulation of fibroblast growth factor 23 (FGF23) in health and disease. FEBS Lett. 593, 1879–1900 (2019).

    Article  PubMed  Google Scholar 

  18. Gattineni, J. et al. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am. J. Physiol. Ren. Physiol. 297, F282–F291 (2009).

    Article  CAS  Google Scholar 

  19. Gattineni, J., Twombley, K., Goetz, R., Mohammadi, M. & Baum, M. Regulation of serum 1,25(OH)2 vitamin D3 levels by fibroblast growth factor 23 is mediated by FGF receptors 3 and 4. Am. J. Physiol. Ren. Physiol. 301, F371–F377 (2011).

    Article  CAS  Google Scholar 

  20. Gattineni, J. et al. Regulation of renal phosphate transport by FGF23 is mediated by FGFR1 and FGFR4. Am. J. Physiol. Ren. Physiol. 306, F351–F358 (2014).

    Article  CAS  Google Scholar 

  21. Andrukhova, O. et al. FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2–SGK1 signaling pathway. Bone 51, 621–628 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Edmonston, D. & Wolf, M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat. Rev. Nephrol. 16, 7–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Goetz, R. et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-klotho complex formation. Proc. Natl Acad. Sci. USA 107, 407–412 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Wolf, M., Koch, T. A. & Bregman, D. B. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J. Bone Miner. Res. 28, 1793–1803 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Goetz, R. & Mohammadi, M. Exploring mechanisms of FGF signalling through the lens of structural biology. Nat. Rev. Mol. Cell Biol. 14, 166–180 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Nakatani, T. et al. In vivo genetic evidence for klotho-dependent, fibroblast growth factor 23 (Fgf23) -mediated regulation of systemic phosphate homeostasis. FASEB J. 23, 433–441 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Urakawa, I. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444, 770–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Bai, X., Dinghong, Q., Miao, D., Goltzman, D. & Karaplis, A. C. Klotho ablation converts the biochemical and skeletal alterations in FGF23 (R176Q) transgenic mice to a klotho-deficient phenotype. Am. J. Physiol. Endocrinol. Metab. 296, E79–E88 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Kurosu, H. et al. Regulation of fibroblast growth factor-23 signaling by klotho. J. Biol. Chem. 281, 6120–6123 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Ben-Dov, I. Z. et al. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest. 117, 4003–4008 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lim, K. et al. α-Klotho expression in human tissues. J. Clin. Endocrinol. Metab. 100, E1308–E1318 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu, M. C. et al. Renal production, uptake, and handling of circulating αKlotho. J. Am. Soc. Nephrol. 27, 79–90 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Lindberg, K. et al. The kidney is the principal organ mediating klotho effects. J. Am. Soc. Nephrol. 25, 2169–2175 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, C. D., Podvin, S., Gillespie, E., Leeman, S. E. & Abraham, C. R. Insulin stimulates the cleavage and release of the extracellular domain of klotho by ADAM10 and ADAM17. Proc. Natl Acad. Sci. USA 104, 19796–19801 (2007).

    Article  CAS  Google Scholar 

  36. Bloch, L. et al. Klotho is a substrate for α-, β- and γ-secretase. FEBS Lett. 583, 3221–3224 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. van Loon, E. P. et al. Shedding of klotho by ADAMs in the kidney. Am. J. Physiol. Ren. Physiol. 309, F359–F368 (2015).

    Article  Google Scholar 

  38. Chen, C. D. et al. Identification of the cleavage sites leading to the shed forms of human and mouse anti-aging and cognition-enhancing protein klotho. PLoS ONE 15, e0226382 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Neyra, J. A. et al. Performance of soluble klotho assays in clinical samples of kidney disease. Clin. Kidney J. 13, 235–244 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Mencke, R. et al. Human alternative klotho mRNA is a nonsense-mediated mRNA decay target inefficiently spliced in renal disease. JCI Insight 2, e94375 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Roig-Soriano, J. et al. Differential toxicity profile of secreted and processed α-Klotho expression over mineral metabolism and bone microstructure. Sci. Rep. 13, 4211 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Richter, B. & Faul, C. FGF23 actions on target tissues – with and without klotho. Front. Endocrinol. 9, 189 (2018).

    Article  Google Scholar 

  43. Dalton, G. et al. Soluble klotho binds monosialoganglioside to regulate membrane microdomains and growth factor signaling. Proc. Natl Acad. Sci. USA 114, 752–757 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wright, J. D., An, S. W., Xie, J., Lim, C. & Huang, C. L. Soluble klotho regulates TRPC6 calcium signaling via lipid rafts, independent of the FGFR-FGF23 pathway. FASEB J. 33, 9182–9193 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Juppner, H. & Wolf, M. αKlotho: FGF23 coreceptor and FGF23-regulating hormone. J. Clin. Invest. 122, 4336–4339 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith, R. C. et al. Circulating αKlotho influences phosphate handling by controlling FGF23 production. J. Clin. Invest. 122, 4710–4715 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, G. et al. α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature 553, 461–466 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Grabner, A. et al. Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab. 22, 1020–1032 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Smith, E. R., Holt, S. G. & Hewitson, T. D. FGF23 activates injury-primed renal fibroblasts via FGFR4-dependent signalling and enhancement of TGF-β autoinduction. Int. J. Biochem. Cell Biol. 92, 63–78 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Yanucil, C. et al. Soluble α-klotho and heparin modulate the pathologic cardiac actions of fibroblast growth factor 23 in chronic kidney disease. Kidney Int. 102, 261–279 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grabner, A. & Faul, C. The role of fibroblast growth factor 23 and klotho in uremic cardiomyopathy. Curr. Opin. Nephrol. Hypertens. 25, 314–324 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Courbon, G. et al. Lipocalin 2 stimulates bone fibroblast growth factor 23 production in chronic kidney disease. Bone Res. 9, 35 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. David, V. et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int. 89, 135–146 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Perwad, F. et al. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 146, 5358–5364 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Hu, M. C. et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 22, 124–136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Thompson, S. et al. Cause of death in patients with reduced kidney function. J. Am. Soc. Nephrol. 26, 2504–2511 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gutierrez, O. M. et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 359, 584–592 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Isakova, T. et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. J. Am. Med. Assoc. 305, 2432–2439 (2011).

    Article  CAS  Google Scholar 

  59. Komaba, H. et al. Fibroblast growth factor 23 and mortality among prevalent hemodialysis patients in the Japan Dialysis Outcomes and Practice Patterns study. Kidney Int. Rep. 5, 1956–1964 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sharma, S. et al. FGF23 and cause-specific mortality in community-living individuals – the Health, Aging, and Body Composition study. J. Am. Geriatr. Soc. 69, 711–717 (2021).

    Article  PubMed  Google Scholar 

  61. Souma, N. et al. Fibroblast growth factor 23 and cause-specific mortality in the general population: the Northern Manhattan study. J. Clin. Endocrinol. Metab. 101, 3779–3786 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu, M. et al. Fibroblast growth factor-23 and the risk of cardiovascular diseases and mortality in the general population: a systematic review and dose-response meta-analysis. Front. Cardiovasc. Med. 9, 989574 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Isakova, T. et al. Longitudinal FGF23 trajectories and mortality in patients with CKD. J. Am. Soc. Nephrol. 29, 579–590 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Kang, M. et al. In-center nocturnal hemodialysis reduced the circulating FGF23, left ventricular hypertrophy, and all-cause mortality: a retrospective cohort study. Front. Med. 9, 912764 (2022).

    Article  Google Scholar 

  65. Moe, S. M. et al. Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: the Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) trial. Circulation 132, 27–39 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Macdougall, I. C. et al. Intravenous iron in patients undergoing maintenance hemodialysis. N. Engl. J. Med. 380, 447–458 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Vergaro, G. et al. Discharge FGF23 level predicts one year outcome in patients admitted with acute heart failure. Int. J. Cardiol. 336, 98–104 (2021).

    Article  PubMed  Google Scholar 

  68. Poelzl, G. et al. FGF23 is associated with disease severity and prognosis in chronic heart failure. Eur. J. Clin. Invest. 44, 1150–1158 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Gruson, D. et al. C-terminal FGF23 is a strong predictor of survival in systolic heart failure. Peptides 37, 258–262 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. von Jeinsen, B. et al. Bone marrow and plasma FGF-23 in heart failure patients: novel insights into the heart–bone axis. ESC Heart Fail. 6, 536–544 (2019).

    Article  Google Scholar 

  71. Plischke, M. et al. Inorganic phosphate and FGF-23 predict outcome in stable systolic heart failure. Eur. J. Clin. Invest. 42, 649–656 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Kanagala, P. et al. Fibroblast-growth-factor-23 in heart failure with preserved ejection fraction: relation to exercise capacity and outcomes. ESC Heart Fail. 7, 4089–4099 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Roy, C. et al. Fibroblast growth factor 23: a biomarker of fibrosis and prognosis in heart failure with preserved ejection fraction. ESC Heart Fail. 7, 2494–2507 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wohlfahrt, P. et al. Association of fibroblast growth factor-23 levels and angiotensin-converting enzyme inhibition in chronic systolic heart failure. JACC Heart Fail. 3, 829–839 (2015).

    Article  PubMed  Google Scholar 

  75. Yan, Y. & Chen, J. Association between serum klotho concentration and all-cause and cardiovascular mortality among American individuals with hypertension. Front. Cardiovasc. Med. 9, 1013747 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kresovich, J. K. & Bulka, C. M. Low serum klotho associated with all-cause mortality among a nationally representative sample of American adults. J. Gerontol. A Biol. Sci. Med. Sci. 77, 452–456 (2022).

    Article  PubMed  Google Scholar 

  77. Seiler, S. et al. Associations of FGF-23 and sKlotho with cardiovascular outcomes among patients with CKD stages 2-4. Clin. J. Am. Soc. Nephrol. 9, 1049–1058 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Brandenburg, V. M. et al. Soluble klotho and mortality: the Ludwigshafen Risk and Cardiovascular Health study. Atherosclerosis 242, 483–489 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Memmos, E. et al. Soluble klotho is associated with mortality and cardiovascular events in hemodialysis. BMC Nephrol. 20, 217 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ko, G. J. et al. The association of klotho gene polymorphism with the mortality of patients on maintenance dialysis. Clin. Nephrol. 80, 263–269 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Faul, C. et al. FGF23 induces left ventricular hypertrophy. J. Clin. Invest. 121, 4393–4408 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Unger, E. D. et al. Association of chronic kidney disease with abnormal cardiac mechanics and adverse outcomes in patients with heart failure and preserved ejection fraction. Eur. J. Heart Fail. 18, 103–112 (2016).

    Article  PubMed  Google Scholar 

  83. Di Marco, G. S. et al. Cardioprotective effect of calcineurin inhibition in an animal model of renal disease. Eur. Heart J. 32, 1935–1945 (2011).

    Article  PubMed  Google Scholar 

  84. Hu, M. C. et al. Klotho and phosphate are modulators of pathologic uremic cardiac remodeling. J. Am. Soc. Nephrol. 26, 1290–1302 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Kieswich, J. E. et al. A novel model of reno-cardiac syndrome in the C57BL/6 mouse strain. BMC Nephrol. 19, 346 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Olauson, H., Mencke, R., Hillebrands, J. L. & Larsson, T. E. Tissue expression and source of circulating αKlotho. Bone 100, 19–35 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Wilkins, B. J. et al. Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ. Res. 94, 110–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Leifheit-Nestler, M. et al. Fibroblast growth factor 23 is induced by an activated renin–angiotensin–aldosterone system in cardiac myocytes and promotes the pro-fibrotic crosstalk between cardiac myocytes and fibroblasts. Nephrol. Dial. Transpl. 33, 1722–1734 (2018).

    Article  CAS  Google Scholar 

  89. Lee, T. W. et al. Fibroblast growth factor 23 stimulates cardiac fibroblast activity through phospholipase C-mediated calcium signaling. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23010166 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kuga, K. et al. Fibrosis growth factor 23 is a promoting factor for cardiac fibrosis in the presence of transforming growth factor-β1. PLoS ONE 15, e0231905 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Touchberry, C. D. et al. FGF23 is a novel regulator of intracellular calcium and cardiac contractility in addition to cardiac hypertrophy. Am. J. Physiol. Endocrinol. Metab. 304, E863–E873 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Grabner, A. et al. FGF23/FGFR4-mediated left ventricular hypertrophy is reversible. Sci. Rep. 7, 1993 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Navarro-Garcia, J. A. et al. Fibroblast growth factor-23 promotes rhythm alterations and contractile dysfunction in adult ventricular cardiomyocytes. Nephrol. Dial. Transpl. 34, 1864–1875 (2019).

    Article  CAS  Google Scholar 

  94. Verkaik, M. et al. High fibroblast growth factor 23 concentrations in experimental renal failure impair calcium handling in cardiomyocytes. Physiol. Rep. 6, e13591 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Andrukhova, O. et al. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol. Med. 6, 744–759 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dai, B. et al. A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model. PLoS ONE 7, e44161 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Han, X. et al. Cardiovascular effects of renal distal tubule deletion of the FGF receptor 1 gene. J. Am. Soc. Nephrol. 29, 69–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Bockmann, I. et al. FGF23-mediated activation of local RAAS promotes cardiac hypertrophy and fibrosis. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20184634 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mhatre, K. N. et al. Crosstalk between FGF23- and angiotensin II-mediated Ca2+ signaling in pathological cardiac hypertrophy. Cell Mol. Life Sci. 75, 4403–4416 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Singh, S. et al. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int. 90, 985–996 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Coe, L. M. et al. FGF-23 is a negative regulator of prenatal and postnatal erythropoiesis. J. Biol. Chem. 289, 9795–9810 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Agoro, R. et al. Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia. FASEB J. 32, 3752–3764 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Han, X., Cai, C., Xiao, Z. & Quarles, L. D. FGF23 induced left ventricular hypertrophy mediated by FGFR4 signaling in the myocardium is attenuated by soluble klotho in mice. J. Mol. Cell Cardiol. 138, 66–74 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Francis, C. et al. Ferric citrate reduces fibroblast growth factor 23 levels and improves renal and cardiac function in a mouse model of chronic kidney disease. Kidney Int. 96, 1346–1358 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Falkner, B., Keith, S. W., Gidding, S. S. & Langman, C. B. Fibroblast growth factor-23 is independently associated with cardiac mass in African-American adolescent males. J. Am. Soc. Hypertens. 11, 480–487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Agarwal, I. et al. Fibroblast growth factor-23 and cardiac structure and function. J. Am. Heart Assoc. 3, e000584 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Akhabue, E. et al. Fibroblast growth factor-23 and subclinical markers of cardiac dysfunction: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Am. Heart J. 245, 10–18 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Patel, R. B. et al. Fibroblast growth factor 23 and long-term cardiac function: the multi-ethnic study of atherosclerosis. Circ. Cardiovasc. Imaging 13, e011925 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Mirza, M. A., Larsson, A., Melhus, H., Lind, L. & Larsson, T. E. Serum intact FGF23 associate with left ventricular mass, hypertrophy and geometry in an elderly population. Atherosclerosis 207, 546–551 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Jovanovich, A. et al. Fibroblast growth factor 23, left ventricular mass, and left ventricular hypertrophy in community-dwelling older adults. Atherosclerosis 231, 114–119 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Gutierrez, O. M. et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 119, 2545–2552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mitsnefes, M. M. et al. FGF23 and left ventricular hypertrophy in children with CKD. Clin. J. Am. Soc. Nephrol. 13, 45–52 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Negishi, K. et al. Association between fibroblast growth factor 23 and left ventricular hypertrophy in maintenance hemodialysis patients. Comparison with B-type natriuretic peptide and cardiac troponin T. Circ. J. 74, 2734–2740 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Leifheit-Nestler, M. et al. Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol. Dial. Transpl. 31, 1088–1099 (2016).

    Article  CAS  Google Scholar 

  115. Henry, A. et al. Therapeutic targets for heart failure identified using proteomics and Mendelian randomization. Circulation 145, 1205–1217 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ix, J. H. et al. Fibroblast growth factor-23 and death, heart failure, and cardiovascular events in community-living individuals: CHS (Cardiovascular Health Study). J. Am. Coll. Cardiol. 60, 200–207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kestenbaum, B. et al. Fibroblast growth factor-23 and cardiovascular disease in the general population: the multi-ethnic study of atherosclerosis. Circ. Heart Fail. 7, 409–417 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lutsey, P. L. et al. Fibroblast growth factor-23 and incident coronary heart disease, heart failure, and cardiovascular mortality: the atherosclerosis risk in communities study. J. Am. Heart Assoc. 3, e000936 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Scialla, J. J. et al. Fibroblast growth factor-23 and cardiovascular events in CKD. J. Am. Soc. Nephrol. 25, 349–360 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Binnenmars, S. H. et al. Fibroblast growth factor 23 and risk of new onset heart failure with preserved or reduced ejection fraction: the PREVEND study. J. Am. Heart Assoc. 11, e024952 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Paul, S. et al. Fibroblast growth factor 23 and incident cardiovascular disease and mortality in middle-aged adults. J. Am. Heart Assoc. 10, e020196 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Janus, S. E. et al. Multi-variable biomarker approach in identifying incident heart failure in chronic kidney disease: results from the Chronic Renal Insufficiency Cohort study. Eur. J. Heart Fail. 24, 988–995 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. Ghuman, J. et al. Fibroblast growth factor 23 and exercise capacity in heart failure with preserved ejection fraction. J. Card. Fail. 27, 309–317 (2021).

    Article  PubMed  Google Scholar 

  124. Cornelissen, A. et al. Intact fibroblast growth factor 23 levels and outcome prediction in patients with acute heart failure. Sci. Rep. 11, 15507 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Koller, L. et al. Fibroblast growth factor 23 is an independent and specific predictor of mortality in patients with heart failure and reduced ejection fraction. Circ. Heart Fail. 8, 1059–1067 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Dorr, K. et al. Randomized trial of etelcalcetide for cardiac hypertrophy in hemodialysis. Circ. Res. 128, 1616–1625 (2021).

    Article  PubMed  Google Scholar 

  127. Marthi, A. et al. Fibroblast growth factor-23 and risks of cardiovascular and noncardiovascular diseases: a meta-analysis. J. Am. Soc. Nephrol. 29, 2015–2027 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Carpenter, T. O. et al. Burosumab therapy in children with X-linked hypophosphatemia. N. Engl. J. Med. 378, 1987–1998 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Takashi, Y. et al. Patients with FGF23-related hypophosphatemic rickets/osteomalacia do not present with left ventricular hypertrophy. Endocr. Res. 42, 132–137 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Hernandez-Frias, O. et al. Risk of cardiovascular involvement in pediatric patients with X-linked hypophosphatemia. Pediatr. Nephrol. 34, 1077–1086 (2019).

    Article  PubMed  Google Scholar 

  131. Nehgme, R., Fahey, J. T., Smith, C. & Carpenter, T. O. Cardiovascular abnormalities in patients with X-linked hypophosphatemia. J. Clin. Endocrinol. Metab. 82, 2450–2454 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Carpenter, T. O. et al. Circulating levels of soluble klotho and FGF23 in X-linked hypophosphatemia: circadian variance, effects of treatment, and relationship to parathyroid status. J. Clin. Endocrinol. Metab. 95, E352–E357 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Liang, Y., Luo, S., Schooling, C. M. & Au Yeung, S. L. Genetically predicted fibroblast growth factor 23 and major cardiovascular diseases, their risk factors, kidney function, and longevity: a two-sample Mendelian randomization study. Front. Genet. 12, 699455 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Akwo, E. et al. Association of genetically predicted fibroblast growth factor-23 with heart failure: a Mendelian randomization study. Clin. J. Am. Soc. Nephrol. 17, 1183–1193 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Xie, J., Yoon, J., An, S. W., Kuro-o, M. & Huang, C. L. Soluble klotho protects against uremic cardiomyopathy independently of fibroblast growth factor 23 and phosphate. J. Am. Soc. Nephrol. 26, 1150–1160 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Yang, K. et al. Klotho protects against indoxyl sulphate-induced myocardial hypertrophy. J. Am. Soc. Nephrol. 26, 2434–2446 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hu, M. C. et al. Recombinant α-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney Int. 91, 1104–1114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Navarro-Garcia, J. A. et al. Enhanced klotho availability protects against cardiac dysfunction induced by uraemic cardiomyopathy by regulating Ca2+ handling. Br. J. Pharmacol. 177, 4701–4719 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhu, H., Gao, Y., Zhu, S., Cui, Q. & Du, J. Klotho improves cardiac function by suppressing reactive oxygen species (ROS) mediated apoptosis by modulating Mapks/Nrf2 signaling in doxorubicin-induced cardiotoxicity. Med. Sci. Monit. 23, 5283–5293 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Xiao, Z. et al. FGF23 expression is stimulated in transgenic α-Klotho longevity mouse model. JCI Insight 4, e132820 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Guo, Y. et al. Klotho protects the heart from hyperglycemia-induced injury by inactivating ROS and NF-κB-mediated inflammation both in vitro and in vivo. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 238–251 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Liu, Q. et al. The axis of local cardiac endogenous klotho-TGF-β1-Wnt signaling mediates cardiac fibrosis in human. J. Mol. Cell Cardiol. 136, 113–124 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Xie, J. et al. Cardioprotection by klotho through downregulation of TRPC6 channels in the mouse heart. Nat. Commun. 3, 1238 (2012).

    Article  PubMed  Google Scholar 

  144. Kuwahara, K. et al. TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J. Clin. Invest. 116, 3114–3126 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lorenz, K., Schmitt, J. P., Schmitteckert, E. M. & Lohse, M. J. A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat. Med. 15, 75–83 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Bueno, O. F. et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 19, 6341–6350 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Purcell, N. H. et al. Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proc. Natl Acad. Sci. USA 104, 14074–14079 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Harris, I. S. et al. Raf-1 kinase is required for cardiac hypertrophy and cardiomyocyte survival in response to pressure overload. Circulation 110, 718–723 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Sun, Y. et al. Beclin-1-dependent autophagy protects the heart during sepsis. Circulation 138, 2247–2262 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kim, H. R. et al. Circulating α-klotho levels in CKD and relationship to progression. Am. J. Kidney Dis. 61, 899–909 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Tanaka, S., Fujita, S., Kizawa, S., Morita, H. & Ishizaka, N. Association between FGF23, α-Klotho, and cardiac abnormalities among patients with various chronic kidney disease stages. PLoS ONE 11, e0156860 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Taneike, M. et al. Alpha-Klotho is a novel predictor of treatment responsiveness in patients with heart failure. Sci. Rep. 11, 2058 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bergmark, B. A. et al. Klotho, fibroblast growth factor-23, and the renin-angiotensin system – an analysis from the PEACE trial. Eur. J. Heart Fail. 21, 462–470 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Shibata, K. et al. Association between circulating fibroblast growth factor 23, α-Klotho, and the left ventricular ejection fraction and left ventricular mass in cardiology inpatients. PLoS ONE 8, e73184 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Buiten, M. S. et al. Soluble klotho is not independently associated with cardiovascular disease in a population of dialysis patients. BMC Nephrol. 15, 197 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Sellier, A. B. et al. FGFR4 and klotho polymorphisms are not associated with cardiovascular outcomes in chronic kidney disease. Am. J. Nephrol. 52, 808–816 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Sun, X., Chen, L., He, Y. & Zheng, L. Circulating α-Klotho levels in relation to cardiovascular diseases: a Mendelian randomization study. Front. Endocrinol. 13, 842846 (2022).

    Article  Google Scholar 

  158. Zhu, X. et al. Renal function mediates the association between klotho and congestive heart failure among middle-aged and older individuals. Front. Cardiovasc. Med. 9, 802287 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. London, G. M. et al. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol. Dial. Transpl. 18, 1731–1740 (2003).

    Article  Google Scholar 

  160. Jono, S. et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ. Res. 87, E10–E17 (2000).

    Article  CAS  PubMed  Google Scholar 

  161. Silswal, N. et al. FGF23 directly impairs endothelium-dependent vasorelaxation by increasing superoxide levels and reducing nitric oxide bioavailability. Am. J. Physiol. Endocrinol. Metab. 307, E426–E436 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Richter, B., Haller, J., Haffner, D. & Leifheit-Nestler, M. Klotho modulates FGF23-mediated NO synthesis and oxidative stress in human coronary artery endothelial cells. Pflug. Arch. 468, 1621–1635 (2016).

    Article  CAS  Google Scholar 

  163. Chung, C. P. et al. α-Klotho expression determines nitric oxide synthesis in response to FGF-23 in human aortic endothelial cells. PLoS ONE 12, e0176817 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Verkaik, M. et al. FGF23 impairs peripheral microvascular function in renal failure. Am. J. Physiol. Heart Circ. Physiol. 315, H1414–H1424 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Six, I. et al. Direct, acute effects of klotho and FGF23 on vascular smooth muscle and endothelium. PLoS ONE 9, e93423 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Lindberg, K. et al. Arterial klotho expression and FGF23 effects on vascular calcification and function. PLoS ONE 8, e60658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Shalhoub, V. et al. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J. Clin. Invest. 122, 2543–2553 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sarmento-Dias, M. et al. Fibroblast growth factor 23 is associated with left ventricular hypertrophy, not with uremic vasculopathy in peritoneal dialysis patients. Clin. Nephrol. 85, 135–141 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Panwar, B. et al. Association of fibroblast growth factor 23 with risk of incident coronary heart disease in community-living adults. JAMA Cardiol. 3, 318–325 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Yokomoto-Umakoshi, M. et al. Investigating the causal effect of fibroblast growth factor 23 on osteoporosis and cardiometabolic disorders: a Mendelian randomization study. Bone 143, 115777 (2021).

    Article  CAS  PubMed  Google Scholar 

  171. Hum, J. M. et al. Chronic hyperphosphatemia and vascular calcification are reduced by stable delivery of soluble klotho. J. Am. Soc. Nephrol. 28, 1162–1174 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Ohnishi, M., Nakatani, T., Lanske, B. & Razzaque, M. S. Reversal of mineral ion homeostasis and soft-tissue calcification of klotho knockout mice by deletion of vitamin D 1α-hydroxylase. Kidney Int. 75, 1166–1172 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cheng, L., Zhang, L., Yang, J. & Hao, L. Activation of peroxisome proliferator-activated receptor γ inhibits vascular calcification by upregulating klotho. Exp. Ther. Med. 13, 467–474 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Chang, J. R. et al. Intermedin1–53 attenuates vascular calcification in rats with chronic kidney disease by upregulation of α-Klotho. Kidney Int. 89, 586–600 (2016).

    Article  CAS  PubMed  Google Scholar 

  175. Zhao, Y. et al. Mammalian target of rapamycin signaling inhibition ameliorates vascular calcification via klotho upregulation. Kidney Int. 88, 711–721 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Lau, W. L. et al. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 82, 1261–1270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Nagai, R. et al. Endothelial dysfunction in the klotho mouse and downregulation of klotho gene expression in various animal models of vascular and metabolic diseases. Cell Mol. Life Sci. 57, 738–746 (2000).

    Article  CAS  PubMed  Google Scholar 

  178. Maltese, G. et al. The anti-ageing hormone klotho induces Nrf2-mediated antioxidant defences in human aortic smooth muscle cells. J. Cell Mol. Med. 21, 621–627 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Kusaba, T. et al. Klotho is associated with VEGF receptor-2 and the transient receptor potential canonical-1 Ca2+ channel to maintain endothelial integrity. Proc. Natl Acad. Sci. USA 107, 19308–19313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kawarazaki, W. et al. Salt causes aging-associated hypertension via vascular Wnt5a under klotho deficiency. J. Clin. Invest. 130, 4152–4166 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Cui, W., Leng, B., Liu, W. & Wang, G. Suppression of apoptosis in human umbilical vein endothelial cells (HUVECs) by klotho protein is associated with reduced endoplasmic reticulum oxidative stress and activation of the PI3K/AKT pathway. Med. Sci. Monit. 24, 8489–8499 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ikushima, M. et al. Anti-apoptotic and anti-senescence effects of klotho on vascular endothelial cells. Biochem. Biophys. Res. Commun. 339, 827–832 (2006).

    Article  CAS  PubMed  Google Scholar 

  183. Yang, K. et al. Indoxyl sulfate induces platelet hyperactivity and contributes to chronic kidney disease-associated thrombosis in mice. Blood 129, 2667–2679 (2017).

    Article  CAS  PubMed  Google Scholar 

  184. Mencke, R. et al. Membrane-bound klotho is not expressed endogenously in healthy or uraemic human vascular tissue. Cardiovasc. Res. 108, 220–231 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Savvoulidis, P. et al. Calcification of coronary arteries and aortic valve and circulating a-klotho levels in patients with chronic kidney disease. J. Thorac. Dis. 12, 431–437 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Liu, Q., Yu, L., Yin, X., Ye, J. & Li, S. Correlation between soluble klotho and vascular calcification in chronic kidney disease: a meta-analysis and systematic review. Front. Physiol. 12, 711904 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Solache-Berrocal, G. et al. CYP24A1 and KL polymorphisms are associated with the extent of vascular calcification but do not improve prediction of cardiovascular events. Nephrol. Dial. Transpl. 36, 2076–2083 (2021).

    Article  CAS  Google Scholar 

  188. Valdivielso, J. M. et al. Association of the rs495392 klotho polymorphism with atheromatosis progression in patients with chronic kidney disease. Nephrol. Dial. Transpl. 34, 2079–2088 (2019).

    Article  CAS  Google Scholar 

  189. Lee, J. et al. Association between serum klotho levels and cardiovascular disease risk factors in older adults. BMC Cardiovasc. Disord. 22, 442 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Alonso, A. et al. Chronic kidney disease is associated with the incidence of atrial fibrillation: the Atherosclerosis Risk in Communities (ARIC) study. Circulation 123, 2946–2953 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Wizemann, V. et al. Atrial fibrillation in hemodialysis patients: clinical features and associations with anticoagulant therapy. Kidney Int. 77, 1098–1106 (2010).

    Article  CAS  PubMed  Google Scholar 

  192. Mehta, R. et al. Association of fibroblast growth factor 23 with atrial fibrillation in chronic kidney disease, from the chronic renal insufficiency cohort study. JAMA Cardiol. 1, 548–556 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Chua, W. et al. Quantification of fibroblast growth factor 23 and N-terminal pro-B-type natriuretic peptide to identify patients with atrial fibrillation using a high-throughput platform: a validation study. PLoS Med. 18, e1003405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Mathew, J. S. et al. Fibroblast growth factor-23 and incident atrial fibrillation: the Multi-Ethnic Study of Atherosclerosis (MESA) and the Cardiovascular Health Study (CHS). Circulation 130, 298–307 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Chua, W. et al. Data-driven discovery and validation of circulating blood-based biomarkers associated with prevalent atrial fibrillation. Eur. Heart J. 40, 1268–1276 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Tan, Z. et al. Relationship between serum growth differentiation factor 15, fibroblast growth factor-23 and risk of atrial fibrillation: a systematic review and meta-analysis. Front. Cardiovasc. Med. 9, 899667 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Huang, S. Y. et al. Fibroblast growth factor 23 dysregulates late sodium current and calcium homeostasis with enhanced arrhythmogenesis in pulmonary vein cardiomyocytes. Oncotarget 7, 69231–69242 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Kao, Y. H. et al. FGF-23 dysregulates calcium homeostasis and electrophysiological properties in HL-1 atrial cells. Eur. J. Clin. Invest. 44, 795–801 (2014).

    Article  CAS  PubMed  Google Scholar 

  199. Lu, Y. Y. et al. Fibroblast growth factor 1 reduces pulmonary vein and atrium arrhythmogenesis via modification of oxidative stress and sodium/calcium homeostasis. Front. Cardiovasc. Med. 8, 813589 (2021).

    Article  CAS  PubMed  Google Scholar 

  200. Nowak, A. et al. Prognostic value and link to atrial fibrillation of soluble klotho and FGF23 in hemodialysis patients. PLoS ONE 9, e100688 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Takeshita, K. et al. Sinoatrial node dysfunction and early unexpected death of mice with a defect of klotho gene expression. Circulation 109, 1776–1782 (2004).

    Article  PubMed  Google Scholar 

  202. Hung, Y. et al. Klotho modulates pro-fibrotic activities in human atrial fibroblasts through inhibition of phospholipase C signaling and suppression of store-operated calcium entry. Biomedicines https://doi.org/10.3390/biomedicines10071574 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Leifheit-Nestler, M. et al. Vitamin D treatment attenuates cardiac FGF23/FGFR4 signaling and hypertrophy in uremic rats. Nephrol. Dial. Transpl. 32, 1493–1503 (2017).

    Article  CAS  Google Scholar 

  204. Slavic, S. et al. Genetic ablation of Fgf23 or klotho does not modulate experimental heart hypertrophy induced by pressure overload. Sci. Rep. 7, 11298 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Andersen, I. A., Huntley, B. K., Sandberg, S. S., Heublein, D. M. & Burnett, J. C. Jr. Elevation of circulating but not myocardial FGF23 in human acute decompensated heart failure. Nephrol. Dial. Transpl. 31, 767–772 (2016).

    Article  CAS  Google Scholar 

  206. Poelzl, G. et al. Klotho is upregulated in human cardiomyopathy independently of circulating klotho levels. Sci. Rep. 8, 8429 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Corsetti, G. et al. Decreased expression of klotho in cardiac atria biopsy samples from patients at higher risk of atherosclerotic cardiovascular disease. J. Geriatr. Cardiol. 13, 701–711 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Scialla, J. J. et al. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int. 83, 1159–1168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Linefsky, J. P. et al. Association of serum phosphate levels with aortic valve sclerosis and annular calcification: the cardiovascular health study. J. Am. Coll. Cardiol. 58, 291–297 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Campos-Obando, N. et al. Genetic evidence for a causal role of serum phosphate in coronary artery calcification: the Rotterdam study. J. Am. Heart Assoc. 11, e023024 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Tentori, F. et al. Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am. J. Kidney Dis. 52, 519–530 (2008).

    Article  CAS  PubMed  Google Scholar 

  212. Block, G. A., Hulbert-Shearon, T. E., Levin, N. W. & Port, F. K. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am. J. Kidney Dis. 31, 607–617 (1998).

    Article  CAS  PubMed  Google Scholar 

  213. Palmer, S. C. et al. Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis. J. Am. Med. Assoc. 305, 1119–1127 (2011).

    Article  CAS  Google Scholar 

  214. Teng, M. et al. Activated injectable vitamin D and hemodialysis survival: a historical cohort study. J. Am. Soc. Nephrol. 16, 1115–1125 (2005).

    Article  CAS  PubMed  Google Scholar 

  215. Investigators, J. D. et al. Effect of oral alfacalcidol on clinical outcomes in patients without secondary hyperparathyroidism receiving maintenance hemodialysis: the J-DAVID randomized clinical trial. J. Am. Med. Assoc. 320, 2325–2334 (2018).

    Article  Google Scholar 

  216. Thadhani, R. et al. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial. J. Am. Med. Assoc. 307, 674–684 (2012).

    Article  CAS  Google Scholar 

  217. Yoon, J. et al. Physiologic regulation of systemic klotho levels by renal CaSR signaling in response to CaSR ligands and pHo. J. Am. Soc. Nephrol. 32, 3051–3065 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Komaba, H. et al. Effects of cinacalcet treatment on serum soluble klotho levels in haemodialysis patients with secondary hyperparathyroidism. Nephrol. Dial. Transpl. 27, 1967–1969 (2012).

    Article  CAS  Google Scholar 

  219. Investigators, E. T. et al. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N. Engl. J. Med. 367, 2482–2494 (2012).

    Article  Google Scholar 

  220. Wolf, M. et al. Effects of etelcalcetide on fibroblast growth factor 23 in patients with secondary hyperparathyroidism receiving hemodialysis. Clin. Kidney J. 13, 75–84 (2020).

    Article  CAS  PubMed  Google Scholar 

  221. Isakova, T. et al. Rationale and approaches to phosphate and fibroblast growth factor 23 reduction in CKD. J. Am. Soc. Nephrol. 26, 2328–2339 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Ferrari, S. L., Bonjour, J. P. & Rizzoli, R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J. Clin. Endocrinol. Metab. 90, 1519–1524 (2005).

    Article  CAS  PubMed  Google Scholar 

  223. Gutierrez, O. M. et al. Impact of phosphorus-based food additives on bone and mineral metabolism. J. Clin. Endocrinol. Metab. 100, 4264–4271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Moe, S. M. et al. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 257–264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Chang, Y. M. et al. Effects of lanthanum carbonate and calcium carbonate on fibroblast growth factor 23 and hepcidin levels in chronic hemodialysis patients. Clin. Exp. Nephrol. 21, 908–916 (2017).

    Article  CAS  PubMed  Google Scholar 

  226. Block, G. A. et al. Effect of ferric citrate on serum phosphate and fibroblast growth factor 23 among patients with nondialysis-dependent chronic kidney disease: path analyses. Nephrol. Dial. Transpl. 34, 1115–1124 (2019).

    Article  CAS  Google Scholar 

  227. Ix, J. H. et al. Effects of nicotinamide and lanthanum carbonate on serum phosphate and fibroblast growth factor-23 in CKD: the COMBINE trial. J. Am. Soc. Nephrol. 30, 1096–1108 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Block, G. A. et al. The effects of tenapanor on serum fibroblast growth factor 23 in patients receiving hemodialysis with hyperphosphatemia. Nephrol. Dial. Transpl. 34, 339–346 (2019).

    Article  CAS  Google Scholar 

  229. Pergola, P. E., Rosenbaum, D. P., Yang, Y. & Chertow, G. M. A randomized trial of tenapanor and phosphate binders as a dual-mechanism treatment for hyperphosphatemia in patients on maintenance dialysis (AMPLIFY). J. Am. Soc. Nephrol. 32, 1465–1473 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Kawabata, C. et al. Changes in fibroblast growth factor 23 and soluble klotho levels after hemodialysis initiation. Kidney Med. 2, 59–67 (2020).

    Article  PubMed  Google Scholar 

  231. Huang, S. H. et al. The kinetics of cystatin C removal by hemodialysis. Am. J. Kidney Dis. 65, 174–175 (2015).

    Article  CAS  PubMed  Google Scholar 

  232. Isakova, T. et al. Fibroblast growth factor 23 in patients undergoing peritoneal dialysis. Clin. J. Am. Soc. Nephrol. 6, 2688–2695 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Hasegawa, H. et al. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int. 78, 975–980 (2010).

    Article  CAS  PubMed  Google Scholar 

  234. Liu, Y. et al. Novel regulatory factors and small-molecule inhibitors of FGFR4 in cancer. Front. Pharmacol. 12, 633453 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Yu, C., Wang, F., Jin, C., Huang, X. & McKeehan, W. L. Independent repression of bile acid synthesis and activation of c-Jun N-terminal kinase (JNK) by activated hepatocyte fibroblast growth factor receptor 4 (FGFR4) and bile acids. J. Biol. Chem. 280, 17707–17714 (2005).

    Article  CAS  PubMed  Google Scholar 

  236. Wang, Y. & Sun, Z. Klotho gene delivery prevents the progression of spontaneous hypertension and renal damage. Hypertension 54, 810–817 (2009).

    Article  CAS  PubMed  Google Scholar 

  237. Lin, W. et al. Klotho restoration via acetylation of peroxisome proliferation-activated receptor γ reduces the progression of chronic kidney disease. Kidney Int. 92, 669–679 (2017).

    Article  CAS  PubMed  Google Scholar 

  238. Zhang, Q., Yin, S., Liu, L., Liu, Z. & Cao, W. Rhein reversal of DNA hypermethylation-associated klotho suppression ameliorates renal fibrosis in mice. Sci. Rep. 6, 34597 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Murray, S. L. & Wolf, M. Pivoting from PTH to FGF23 to mend breaking hearts on dialysis. Circ. Res. 128, 1626–1628 (2021).

    Article  CAS  PubMed  Google Scholar 

  240. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  241. Bakris, G. L. et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N. Engl. J. Med. 383, 2219–2229 (2020).

    Article  CAS  PubMed  Google Scholar 

  242. The EMPA-KIDNEY Collaborative Group. Empagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 388, 117–127 (2023).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.E. and A.G. researched data for the article. All the authors contributed substantially to discussion of the content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Myles Wolf.

Ethics declarations

Competing interests

M.W. has equity interests in Akebia, Unicycive and Walden, and has served as a consultant for Bayer, Enyo, Jnana, Launch, Pharmacosmos and Reata. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Christian Faul and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edmonston, D., Grabner, A. & Wolf, M. FGF23 and klotho at the intersection of kidney and cardiovascular disease. Nat Rev Cardiol 21, 11–24 (2024). https://doi.org/10.1038/s41569-023-00903-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00903-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing