Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lessons from inducible pluripotent stem cell models on neuronal senescence in aging and neurodegeneration

Abstract

Age remains the central risk factor for many neurodegenerative diseases including Parkinson’s disease, Alzheimer’s disease and amyotrophic lateral sclerosis. Although the mechanisms of aging are complex, the age-related accumulation of senescent cells in neurodegeneration is well documented and their clearance can alleviate disease-related features in preclinical models. Senescence-like characteristics are observed in both neuronal and glial lineages, but their relative contribution to aging and neurodegeneration remains unclear. Human pluripotent stem cell-derived neurons provide an experimental model system to induce neuronal senescence. However, the extensive heterogeneity in the profile of senescent neurons and the methods to assess senescence remain major challenges. Here, we review the evidence of cellular senescence in neuronal aging and disease, discuss human pluripotent stem cell-based model systems used to investigate neuronal senescence and propose a panel of cellular and molecular hallmarks to characterize senescent neurons. Understanding the role of neuronal senescence may yield novel therapeutic opportunities in neurodegenerative disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Established hallmarks of cellular senescence and those commonly identified in aged neurons and neurodegenerative neurons.
Fig. 2: Summary of PSC models and associated aging phenotypes.
Fig. 3: Hypothetical mechanisms of neuronal senescence that could be implicated in neurodegenerative disease.

Similar content being viewed by others

References

  1. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  2. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell. Res. 25, 585–621 (1961).

    Article  CAS  PubMed  Google Scholar 

  3. Harley, C. B., Vaziri, H., Counter, C. M. & Allsopp, R. C. The telomere hypothesis of cellular aging. Exp. Gerontol. 27, 375–382 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Coppé, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Herdy, J. R. et al. Increased post-mitotic senescence in aged human neurons is a pathological feature of Alzheimer’s disease. Cell Stem Cell 29, 1637–1652 (2022).

    Article  Google Scholar 

  7. Ng, P. Y., McNeely, T. L. & Baker, D. J. Untangling senescent and damage-associated microglia in the aging and diseased brain. FEBS J. 290, 1326–1339 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Crouch, J., Shvedova, M., Thanapaul, R., Botchkarev, V. & Roh, D. Epigenetic regulation of cellular senescence. Cells 11, 672 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kowald, A., Passos, J. F. & Kirkwood, T. B. L. On the evolution of cellular senescence. Aging Cell 19, e13270 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miwa, S., Kashyap, S., Chini, E. & von Zglinicki, T. Mitochondrial dysfunction in cell senescence and aging. J. Clin. Invest. 132, e158447 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Muñoz-Espín, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    Article  PubMed  Google Scholar 

  13. Gibaja, A. et al. TGFβ2-induced senescence during early inner ear development. Sci. Rep. 9, 5912 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Reichel, W., Hollander, J., Clark, J. H. & Strehler, B. L. Lipofuscin pigment accumulation as a function of age and distribution in rodent brain. J. Gerontol. 23, 71–78 (1968).

    Article  CAS  PubMed  Google Scholar 

  15. Moreno-García, A., Kun, A., Calero, O., Medina, M. & Calero, M. An overview of the role of lipofuscin in age-related neurodegeneration. Front. Neurosci. 12, 464 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xu, P. et al. The landscape of human tissue and cell type specific expression and co-regulation of senescence genes. Mol. Neurodegener. 17, 5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saul, D. et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat. Commun. 13, 4827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ogrodnik, M. et al. Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice. Aging Cell 20, e13296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578–582 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Musi, N. et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 17, e12840 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rocha, L. R. et al. Early removal of senescent cells protects retinal ganglion cells loss in experimental ocular hypertension. Aging Cell 19, e13089 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, P. et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci. 22, 719–728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chinta, S. J. et al. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease. Cell Rep. 22, 930–940 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gonzales, M. M. et al. Senolytic therapy to modulate the progression of Alzheimer’s disease (SToMP-AD): a pilot clinical trial. J. Prev. Alzheimers Dis. 9, 22–29 (2022).

    CAS  PubMed  Google Scholar 

  25. Dehkordi, S. K. et al. Profiling senescent cells in human brains reveals neurons with CDKN2D/p19 and tau neuropathology. Nat. Aging 1, 1107–1116 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Langfelder, P. & Horvath, S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol. 1, 54 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Geng, Y. Q., Guan, J. T., Xu, X. H. & Fu, Y. C. Senescence-associated beta-galactosidase activity expression in aging hippocampal neurons. Biochem. Biophys. Res. Commun. 396, 866–869 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Bhanu, M. U., Mandraju, R. K., Bhaskar, C. & Kondapi, A. K. Cultured cerebellar granule neurons as an in vitro aging model: topoisomerase IIβ as an additional biomarker in DNA repair and aging. Toxicol. In Vitro 24, 1935–1945 (2010).

    Article  PubMed  Google Scholar 

  29. de Mera-Rodríguez, J. A. et al. Endogenous pH 6.0 β-galactosidase activity is linked to neuronal differentiation in the olfactory epithelium. Cells 11, 298 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Piechota, M. et al. Is senescence-associated β-galactosidase a marker of neuronal senescence? Oncotarget 7, 81099–81109 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jurk, D. et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11, 996–1004 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Moreno-Blas, D. et al. Cortical neurons develop a senescence-like phenotype promoted by dysfunctional autophagy. Aging 11, 6175–6198 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bigagli, E. et al. Long-term neuroglial cocultures as a brain aging model: hallmarks of senescence, microRNA expression profiles, and comparison with in vivo models. J. Gerontol. A Biol. Sci. Med. Sci. 71, 50–60 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Kang, H. T., Lee, K. B., Kim, S. Y., Choi, H. R. & Park, S. C. Autophagy impairment induces premature senescence in primary human fibroblasts. PLoS ONE 6, e23367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wong, A., Kieu, T. & Robbins, P. D. The Ercc1−/Δ mouse model of accelerated senescence and aging for identification and testing of novel senotherapeutic interventions. Aging 12, 24481–24483 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yousefzadeh, M. J. et al. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell 19, e13094 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. de Waard, M. C. et al. Age-related motor neuron degeneration in DNA repair-deficient Ercc1 mice. Acta Neuropathol. 120, 461–475 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dollé, M. E. et al. Broad segmental progeroid changes in short-lived Ercc1−/Δ7 mice. Pathobiol. Aging Age Relat. Dis. 1, 10.3402/pba.v1i0.7219(2011).

  39. Sepe, S. et al. Inefficient DNA repair Is an aging-related modifier of Parkinson’s disease. Cell Rep. 15, 1866–1875 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pachajoa, H. et al. Hutchinson–Gilford progeria syndrome: clinical and molecular characterization. Appl. Clin. Genet. 13, 159–164 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Machiela, E. et al. The interaction of aging and cellular stress contributes to pathogenesis in mouse and human huntington disease neurons. Front Aging Neurosci. 12, 524369 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baek, J. H. et al. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior. Hum. Mol. Genet. 24, 1305–1321 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Arendt, T., Rödel, L., Gärtner, U. & Holzer, M. Expression of the cyclin-dependent kinase inhibitor p16 in Alzheimerʼs disease. Neuroreport 7, 3047–3049 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. McShea, A., Harris, P. L., Webster, K. R., Wahl, A. F. & Smith, M. A. Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s disease. Am. J. Pathol. 150, 1933–1939 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, B. et al. An inducible p21-Cre mouse model to monitor and manipulate p21-highly-expressing senescent cells in vivo. Nat. Aging 1, 962–973 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hu, W. et al. Direct conversion of normal and Alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell 17, 204–212 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Mertens, J. et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17, 705–718 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yoo, A. S. et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228–231 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Capano, L. S. et al. Recapitulation of endogenous 4R tau expression and formation of insoluble tau in directly reprogrammed human neurons. Cell Stem Cell 29, 918–932 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, C. et al. Establishing RNAge to score cellular aging and rejuvenation paradigms and identify novel age-modulating compounds. Preprint at bioRxiv https://doi.org/10.1101/2023.07.03.547539 (2023).

  51. Sun, Z. et al. Endogenous recapitulation of Alzheimer’s disease neuropathology through human 3D direct neuronal reprogramming. Preprint at bioRxiv https://doi.org/10.1101/2023.05.24.542155 (2023).

  52. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Ciceri, G. et al. An epigenetic barrier sets the timing of human neuronal maturation. Nature, https://doi.org/10.1038/s41586-023-06984-8 (2024).

  55. Kim, T. W. et al. Biphasic activation of WNT signaling facilitates the derivation of midbrain dopamine neurons from hESCs for translational use. Cell Stem Cell 28, 343–355 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kirkeby, A. et al. Predictive markers guide differentiation to improve graft outcome in clinical translation of hESC-based therapy for Parkinson’s disease. Cell Stem Cell 20, 135–148 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Maury, Y. et al. Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat. Biotechnol. 33, 89–96 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Marion, R. M. et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4, 141–154 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Miller, J. D. et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13, 691–705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim, Y. et al. Mitochondrial aging defects emerge in directly reprogrammed human neurons due to their metabolic profile. Cell Rep. 23, 2550–2558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lapasset, L. et al. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 25, 2248–2253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bhaduri, A. et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature 578, 142–148 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shaker, M. R., Aguado, J., Chaggar, H. K. & Wolvetang, E. J. Klotho inhibits neuronal senescence in human brain organoids. NPJ Aging Mech. Dis. 7, 18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Luo, C. et al. Cerebral organoids recapitulate epigenomic signatures of the human fetal brain. Cell Rep. 17, 3369–3384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Madhavan, M. et al. Induction of myelinating oligodendrocytes in human cortical spheroids. Nat. Methods 15, 700–706 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xiang, Y. et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell 21, 383–398 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mansour, A. A. et al. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 36, 432–441 (2018).

    PubMed  PubMed Central  Google Scholar 

  68. Revah, O. et al. Maturation and circuit integration of transplanted human cortical organoids. Nature 610, 319–326 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Doi, D. et al. Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson’s disease. Nat. Commun. 11, 3369 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zheng, X. et al. Human spinal GABA neurons survive and mature in the injured nonhuman primate spinal cord. Stem Cell Rep. 18, 439–448 (2023).

    Article  CAS  Google Scholar 

  71. Higuera, G. A. et al. An expandable embryonic stem cell-derived Purkinje neuron progenitor population that exhibits in vivo maturation in the adult mouse cerebellum. Sci. Rep. 7, 8863 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Buchanan, S., Combet, E., Stenvinkel, P. & Shiels, P. G. Klotho, aging, and the failing kidney. Front. Endocrinol. 11, 560 (2020).

    Article  Google Scholar 

  73. Hanson, K., Fisher, K. & Hooper, N. M. Exploiting the neuroprotective effects of α-klotho to tackle ageing- and neurodegeneration-related cognitive dysfunction. Neuronal Signal 5, NS20200101 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lim, K. et al. α-Klotho expression in human tissues. J. Clin. Endocrinol. Metab. 100, E1308–E1318 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vo, H. T., Laszczyk, A. M. & King, G. D. Klotho, the key to healthy brain aging? Brain Plast. 3, 183–194 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kosakai, A. et al. Degeneration of mesencephalic dopaminergic neurons in klotho mouse related to vitamin D exposure. Brain Res. 1382, 109–117 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Hu, X. et al. Association analysis of 15 GWAS-linked loci with Parkinson’s disease in Chinese Han population. Neurosci. Lett. 725, 134867 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brichta, L. et al. Identification of neurodegenerative factors using translatome-regulatory network analysis. Nat. Neurosci. 18, 1325–1333 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Riessland, M. et al. Loss of SATB1 Induces p21-dependent cellular senescence in post-mitotic dopaminergic neurons. Cell Stem Cell 25, 514–530 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vera, E., Bosco, N. & Studer, L. Generating late-onset human iPSC-based disease models by inducing neuronal age-related phenotypes through telomerase manipulation. Cell Rep. 17, 1184–1192 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fathi, A. et al. Chemically induced senescence in human stem cell-derived neurons promotes phenotypic presentation of neurodegeneration. Aging Cell 21, e13541 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Yang, J. H. et al. Loss of epigenetic information as a cause of mammalian aging. Cell 186, 305–326 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Birger, A. et al. Human iPSC-derived astrocytes from ALS patients with mutated C9ORF72 show increased oxidative stress and neurotoxicity. EBioMedicine 50, 274–289 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Niu, X. et al. iPSC-sEVs alleviate microglia senescence to protect against ischemic stroke in aged mice. Mater. Today Bio 19, 100600 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Casella, G. et al. Transcriptome signature of cellular senescence. Nucleic Acids Res. 47, 11476 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Uyar, B. et al. Single-cell analyses of aging, inflammation and senescence. Ageing Res. Rev. 64, 101156 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee, P. J. et al. NIH SenNet Consortium to map senescent cells throughout the human lifespan to understand physiological health. Nat. Aging 2, 1090–1100 (2022).

    Article  Google Scholar 

  89. Basisty, N. et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 18, e3000599 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Grodstein, F. et al. Characteristics of epigenetic clocks across blood and brain tissue in older women and men. Front. Neurosci. 14, 555307 (2020).

    Article  PubMed  Google Scholar 

  91. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 10, 573–591 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Steg, L. C. et al. Novel epigenetic clock for fetal brain development predicts prenatal age for cellular stem cell models and derived neurons. Mol. Brain 14, 98 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Nat. Aging 3, 1144–1166 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Perez, K. et al. DNA repair-deficient premature aging models display accelerated epigenetic age. Aging Cell 23, e14058 (2024).

    Article  CAS  PubMed  Google Scholar 

  96. Anerillas, C. et al. A BDNF-TrkB autocrine loop enhances senescent cell viability. Nat. Commun. 13, 6228 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gasek, N. S., Kuchel, G. A., Kirkland, J. L. & Xu, M. Strategies for targeting senescent cells in human disease. Nat. Aging 1, 870–879 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Snyder, C. Mendes and S. Oakeley for their invaluable administrative support. This Review was funded by the joint efforts of The Michael J. Fox Foundation for Parkinson′s Research (MJFF) and the Aligning Science Across Parkinson′s (ASAP) initiative. MJFF administers the grant ASAP-020370 on behalf of ASAP and itself. The work of the authors was funded by grants ASAP-000472, ASAP-000592, ASAP-020566 administered through MJFF. All figures were created with BioRender.com. For the purpose of open access, the authors have applied a CC BY public copyright license to the author accepted manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: I.D.L., M.L., W.B. and L.S. Manuscript preparation: I.D.L. and L.S. Manuscript editing: I.D.L., M.L., W.B. and L.S.

Corresponding authors

Correspondence to Isabelle R. de Luzy or Lorenz Studer.

Ethics declarations

Competing interests

L.S. is a scientific cofounder and consultant of BlueRock Therapeutics and Dacapo Brainscience. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Andrew Yoo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Luzy, I.R., Lee, M.K., Mobley, W.C. et al. Lessons from inducible pluripotent stem cell models on neuronal senescence in aging and neurodegeneration. Nat Aging 4, 309–318 (2024). https://doi.org/10.1038/s43587-024-00586-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-024-00586-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing